精英家教网 > 初中数学 > 题目详情
如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。
(1);(2)9;(3)△AOB∽△DBE.理由见解析.

试题分析:(1)已知了抛物线图象上的三点坐标,可用待定系数法求出抛物线的解析式;
(2)根据抛物线的解析式,易求得抛物线顶点D的坐标;过D作DF⊥x轴于F,那么四边形AEDB的面积就可以由△AOB、△DEF、梯形BOFD的面积和求得.
(3)先判定△DBE是直角三角形,即可得证△AOB∽△DBE.
试题解析:(1)∵抛物线与y轴交于点(0,3),

∴设抛物线解析式为
根据题意,得
解得
∴抛物线的解析式为
(2)由顶点坐标公式求得顶点坐标为(1,4)
设对称轴与x轴的交点为F
∴四边形ABDE的面积= 


(3)相似
如图,



即:,所以△BDE是直角三角形
∴∠AOB=∠DBE=90°,且
∴△AOB∽△DBE.
考点: 二次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在如图的直角坐标系中,已知点A(2,0)、B(0,-4),将线段AB绕点A按逆时针方向旋转90°至AC.

(1)求点C的坐标;
(2)若抛物线y=-x2+ax+4经过点C.
①求抛物线的解析式;
②在抛物线上是否存在点P(点C除外)使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,一次函数y=x+m (m为常数)的图像与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B.

(1)求m的值及抛物线的函数表达式;
(2)若P是抛物线对称轴上一动点,△ACP周长最小时,求出P的坐标;
(3)是否存在抛物在线一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若不存在,请说明理由;
(4)在(2)的条件下过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请直接写出结果,如果不是请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=的图像经过B、C两点.

(1)求该二次函数的解析式;
(2)结合函数的图像探索:当y>0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.

(1)说明:
(2)当点C、点A到y轴距离相等时,求点E坐标.
(3)当的面积为时,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某超市经销一种销售成本为每件20元的商品.据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周的销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y件.
(1)写出y与x的函数关系式及自变量x的取值范围;
(2)该超市想通过销售这种商品一周获得利润8000元,销售单价应定为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为(  )
A.﹣5B.5C.3D.﹣3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的对称轴是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将函数变形为的形式,正确的是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案