精英家教网 > 初中数学 > 题目详情
18.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

分析 (1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;
(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
(3)分别从∠EDF=90°与∠DEF=90°两种情况讨论即可求解.

解答 (1)证明:∵在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,
∴∠C=90°-∠A=30°.
∵CD=4tcm,AE=2tcm,
又∵在直角△CDF中,∠C=30°,
∴DF=$\frac{1}{2}$CD=2tcm,
∴DF=AE;

(2)解:∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即60-4t=2t,
解得:t=10,
即当t=10时,?AEFD是菱形;

(3)解:当t=$\frac{15}{2}$时△DEF是直角三角形(∠EDF=90°);
当t=12时,△DEF是直角三角形(∠DEF=90°).
理由如下:
当∠EDF=90°时,DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
∵CD=4tcm,
∴DF=AE=2tcm,
∴AD=2AE=4tcm,
∴4t+4t=60,
∴t=$\frac{15}{2}$时,∠EDF=90°.
当∠DEF=90°时,DE⊥EF,
∵四边形AEFD是平行四边形,
∴AD∥EF,
∴DE⊥AD,
∴△ADE是直角三角形,∠ADE=90°,
∵∠A=60°,
∴∠DEA=30°,
∴AD=$\frac{1}{2}$AE,
AD=AC-CD=60-4t(cm),AE=DF=$\frac{1}{2}$CD=2tcm,
∴60-4t=t,
解得t=12.
综上所述,当t=$\frac{15}{2}$时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).

点评 此题属于四边形的综合题.考查了动点问题、平行四边形的判定与性质、菱形的判定与性质、直角三角形的性质以及勾股定理等知识.注意掌握分类讨论思想的应用是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.计算:
(1)(23$\frac{2}{3}$-29$\frac{7}{15}$+26.6-19$\frac{5}{9}$)×(-45);   
(2)-32+(-2$\frac{1}{2}$)2×(-$\frac{4}{25}$)+|-22|
(3)47$\frac{24}{25}$÷(-48)
(4)-52-[-4+(1-0.2×$\frac{1}{5}$)÷(-2)].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,若这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题.
(1)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;
(2)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:
(1)$\frac{\sqrt{3}}{\sqrt{5}}$       
(2)$\frac{\sqrt{8}}{\sqrt{2a}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知如图,直线l1:y=-$\frac{1}{2}$x+4与x轴、y轴分别交于点A、点B,另一直线l2:y=kx+b(k≠0)经过点C(4,0),且把△AOB分成两部分.
(1)若l1∥l2,求过点C的直线的解析式.
(2)若△AOB被直线l2分成的两部分面积相等,求过点C的直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“AAS”为依据,还要添加的条件为∠ACB=∠F.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知:AB是⊙O的直径,点C是⊙O上的一点,切线CD交AB的延长线于D.
(1)求证:△CBD∽△ACD.
(2)若CD=4,BD=2,求直径AB的长.
(3)在(2)的前提下求tan∠CAB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.多项式3x+5y的次数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案