精英家教网 > 初中数学 > 题目详情
某商场销售某种品牌的手机,每部进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8部;而当销售价每降低50元时,平均每天就能多售出4部.
(1)当售价为2800元时,这种手机平均每天的销售利润达到多少元?
(2)若设每部手机降低x元,每天的销售利润为y元,试写出y与x之间的函数关系式.
(3)商场要想获得最大利润,每部手机的售价应订为多少元?此时的最大利润是多少元?
(1)当售价为2800元时,这种手机平均每天的销售利润达到4800元;
(2)
(3)每台彩电降价150元时,商场每天销售这种彩电的利润最大,最大利润是5000元.

试题分析:(1)当售价为2800元时,销售价降低100元,平均每天就能售出16部.即可求出每天利润;
(2)根据:利润=(每台实际售价﹣每台进价)×销售量,每台实际售价=2900﹣x,销售量=8+4×,列函数关系式;
(3)利用二次函数的顶点坐标公式,求函数的最大值.
试题解析:(1)当售价为2800元时,销售价降低100元,平均每天就能售出16部.
所以:这种手机平均每天的销售利润为:(元);
(2)根据题意,得,

(3)对于,
时,

所以,每台彩电降价150元时,商场每天销售这种彩电的利润最大,最大利润是5000元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数.

(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y<0时,x的取值范围;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为
A.y=(x-2)2B.y=x2C.y=x2+6D.y=(x-2)2+6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某服装经营部每天的固定费用为300元,现试销一种成本为每件80元的服装.规定试销期间销售单价不低于成本单价,且获利不得高于35%.经试销发现,每件销售单价相对成本提高x(元)(x为整数)与日均销售量y(件)之间的关系符合一次函数y=kx+b,且当x=10时,y=100;x=20时,y=80.
(1)求一次函数y=kx+b的关系式;
(2)设该服装经营部日均获得毛利润为W元(毛利润=销售收入-成本-固定费用),求W关于x的函数关系式;并求当销售单价定为多少元时,日均毛利润最大,最大日均毛利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的解析式为
(1)求证:不论m为何值,此抛物线与x轴必有两个交点,且两交点A、B之间的距离为定值;
(2)设点P为此抛物线上一点,若△PAB的面积为8,求符合条件的点P的坐标;
(3)若(2)中△PAB的面积为S(S>0),试根据面积S值的变化情况,确定符合条件的点P的个数(本小题直接写出结论,不要求写出计算、证明过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

和点分别为抛物线上的两点,则. (用“>”或“<”填空).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,Rt△OBC的两条直角边分别落在x轴、y轴上,且OB=1,OC=3,将△OBC绕原点O顺时针旋转90°得到△OAE,将△OBC沿y轴翻折得到△ODC,AE与CD交于点F.

(1)若抛物线过点A、B、C, 求此抛物线的解析式;
(2)求△OAE与△ODC重叠的部分四边形ODFE的面积;
(3)点M是第三象限内抛物线上的一动点,点M在何处时△AMC的面积最大?最大面积是多少?求出此时点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=3x2的图象向左平移2个单位,得到新的图象的二次函数表达式是(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的图象如图所示,则y<0时自变量x的取值范围是     .

查看答案和解析>>

同步练习册答案