精英家教网 > 初中数学 > 题目详情

已知:如图,Rt△ABC中,点D在斜边AB上,以AD为直径的⊙O与BC相切于点E,连接DE
并延长,与AC的延长线交于点F.
(1)求证:AD=AF;
(2)若AC=3,BD=1,求CF的长.

(1)证明:连接OE,
∵BC与⊙O相切于点E,
∴OE⊥BC,即∠OEB=90°.
∴∠OEB=∠ACB=90°.
∴OE∥AC.
∴∠F=∠OED.
∵OE=OD,
∴∠ODE=∠OED.
∴∠F=∠ODE=∠ADF.
∴AD=AF;
(2)设⊙O的半径是r.
∵OE∥AC,
∴△OBE∽△ABC.

当AC=3,BD=1时

解得,r=
∴AF=AD=2r=1+
∴CF=AF-AC=1+-3=-2.
分析:(1)连接OE,由切线的性质和圆的半径相等以及平行线的性质证明∠F=∠ODE=∠ADF即可证明AD=AF;
(2)设⊙O的半径是r,由OE∥AC,可得△OBE∽△ABC,利用相似三角形的性质:对应边的比值相等即可求出r的值,因为AF=AD=2r,所以CF的长也可求出.
点评:主要考查了切线的判定方法和相似三角形的判定以及性质.要掌握这些基本性质才会在综合习题中灵活运用.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等,垂直或平行关系中的一种,那么请你把它写出来并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知:如图,Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,且不与A、B两点重合,AE⊥AB,AE=BD,连接DE、DC.
(1)求证:△ACE≌△BCD;
(2)猜想:△DCE是
等腰直角
三角形;并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且O精英家教网C=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,点E是AC的中点.
求证:∠EBD=∠EDB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,Rt△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC.
求证:MN=AC.

查看答案和解析>>

同步练习册答案