精英家教网 > 初中数学 > 题目详情
如图1,已知直线y=-2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
(l)当点C与点O重合时,DE=
1
1

(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
分析:(1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;
(2)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
(3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.
解答:解:∵直线AB的解析式为y=-2x+4,
∴点A的坐标为(2,0),点B的坐标为(0,4),即可得OB=4,OA=2,
(1)当点C与点O重合时如图所示,

∵DE垂直平分BC(BO),
∴DE是△BOA的中位线,
∴DE=
1
2
OA=1;

(2)当CE∥OB时,如图所示:

∵DE为BC的中垂线,
∴BD=CD,EB=EC,
∴∠DBC=∠DCB,∠EBC=∠ECB,
∴∠DCE=∠DBE,
∵CE∥OB,
∴∠CEA=∠DBE,
∴∠CEA=∠DCE,
∴BE∥DC,
∴四边形BDCE为平行四边形,
又∵BD=CD,
∴四边形BDCE为菱形.

(3)当点C与点O重合时,OD取得最大值,此时OD=
1
2
OB=2;
当点C与点A重合时,OD取得最小值,如图所示:

在Rt△AOB中,AB=
OA2+OB2
=2
5

∵DE垂直平分BC(BA),
∴BE=
1
2
BA=
5

易证△BDE∽△BAO,
BE
BO
=
BD
AB
,即
5
4
=
BD
2
5

解得:BD=
5
2

则OD=OB-BD=4-
5
2
=
3
2

综上可得:
3
2
≤OD≤2.
点评:本题属于一次函数的综合题,涉及了菱形的判定、中垂线的性质及动点问题的计算,难点在第三问,注意分别确定OD取得最大值及最小值的位置是关键,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图1,已知直线:y=
3
3
x+
3
与直角坐标系xOy的x轴交于点A,与y轴交于点B,点M为x轴正半轴上一点,以点M为圆心的⊙M与直线AB相切于B点,交x轴于C、D两点,与y轴交于另一点E.
(1)求圆心M的坐标;
(2)如图2,连接BM延长交⊙M于F,点N为
CF
上任一点,连DN交BF于Q,连FN并延长交x轴于点P.则CP与MQ有何数量关系?证明你的结论;
(3)如图3,连接BM延长交⊙M于F,点N为
CF
上一动点,NH⊥x轴于H,NG⊥BF于G,连接GH,当N点运动时,下列两个结论:①NG+NH为定值;②GH的长度不变;其中只有一个是正确的,请你选择正确的结论加以证明,并求出其值?精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知直线l的解析式为y=
43
x+4
,它与x轴、y轴分别相交于A、B两点.点C从点O出发沿OA以每秒1个单位的速度向点A匀速运动;点D从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,点C、D同时出发,当点C到达点A时同时停止运动.伴随着C、D的运动,EF始终保持垂直平分CD,垂足为E,且EF交折线AB-BO-AO于点F.
(1)直接写出A、B两点的坐标;
(2)设点C、D的运动时间是t秒(t>0).
①用含t的代数式分别表示线段AD和AC的长度;
②在点F运动的过程中,四边形BDEF能否成为直角梯形?若能,求t的值;若不能,请说明理由.(可利用备用图解题)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知直线y=kx与抛物线y=-
4
27
x2+
22
3
交于点A(3,6).
(1)求k的值;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意,解答问题:

(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.
(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(-2,-1)之间的距离.
(3)在(2)的基础上,若有一点D在x轴上运动,当满足DM=DN时,请求出此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下面证明:

(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b
证明:∵a⊥c  (已知)
∴∠1=
∠2
∠2
(垂直定义)
∵b∥c (已知)
∴∠1=∠2  (
两直线平行,同位角相等
两直线平行,同位角相等

∴∠2=∠1=90° (
等量代换
等量代换

∴a⊥b      (
垂直的定义
垂直的定义

(2)如图2:AB∥CD,∠B+∠D=180°,求证:CB∥DE
证明:∵AB∥CD (已知)
∴∠B=
∠C
∠C
两直线平行,内错角相等
两直线平行,内错角相等

∵∠B+∠D=180° (已知)
∴∠C+∠D=180° (
等量代换
等量代换

∴CB∥DE   (
同旁内角互补,两直线平行
同旁内角互补,两直线平行

查看答案和解析>>

同步练习册答案