精英家教网 > 初中数学 > 题目详情
(2002•佛山)如图,已知⊙O的直径AB与弦CD相交于点G,E是CD延长线上的一点,连接AE交⊙O于F,连接AC、CF,若AC2=AF•AE.
求证:(1)△ACF∽△AEC;(2)AB⊥CD.

【答案】分析:(1)由已知条件AC2=AF•AE,可得出=,∠CAF=∠EAC,根据相似三角形的判定得出△ACF∽△AEC
(2)由(1)得出的结论可知∠AFC=∠ACE,连接BC,又得∠AFC=∠ABC,从而得出∠ABC=∠ACE,再根据直径与弦的关系,得出∠ACB=∠ACE+∠BCG=90°,从而推出∠ABC+∠BCG=90°,∠BGC=90°,从而得出AB⊥CD.
解答:证明:(1)∵AC2=AF•AE,
,∠CAF=∠EAC.
∴△ACF∽△AEC.

(2)方法一:连接BC,
∵△ACF∽△AEC,
∴∠AFC=∠ACE.
∵∠AFC=∠ABC,
∴∠ABC=∠ACE.
∵AB是⊙O的直径,
∴∠ACB=∠ACE+∠BCG=90°.
∴∠ABC+∠BCG=90°.
∴∠BGC=90°.
∴AB⊥CD.
方法二:
∵△ACF∽△AEC,
∴∠AFC=∠ACE.
∵∠AFC=∠ADC,
∴∠ADC=∠ACE.
∴AD=AC,
∵AB是⊙O的直径,


∴∠BAD=∠BAC.
∴AB⊥CD.
点评:本题主要考查弦切角定理,相似三角形的判定,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《锐角三角函数》(04)(解析版) 题型:解答题

(2002•佛山)如图,已知矩形ABCD的对角线长为5,周长为14,AD>AB.
(1)求矩形ABCD的面积;
(2)求tan∠ADB的值.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(03)(解析版) 题型:选择题

(2002•佛山)如图,直线AB切⊙O于点A,割线BDC交⊙O于点D、C.若∠C=30°,∠B=20°,则∠ADC=( )

A.70°
B.50°
C.30°
D.20°

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《四边形》(05)(解析版) 题型:解答题

(2002•佛山)如图,已知矩形ABCD的对角线长为5,周长为14,AD>AB.
(1)求矩形ABCD的面积;
(2)求tan∠ADB的值.

查看答案和解析>>

科目:初中数学 来源:2002年广东省佛山市中考数学试卷(解析版) 题型:选择题

(2002•佛山)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点D,过点D作直线EF∥BC,交AB于E,交AC于F,图中等腰三角形的个数共有( )

A.3个
B.4个
C.5个
D.6个

查看答案和解析>>

同步练习册答案