分析 根据题目中的式子可以判断在ai≠0(i=1,2,…,2014)中,有多少个正数和负数,根据一次函数的性质,从而可以求得相应的概率.
解答 解:∵$\frac{|{a}_{1}|}{{a}_{1}}$+$\frac{|{a}_{2}|}{{a}_{2}}$+$\frac{|{a}_{3}|}{{a}_{3}}$+…+$\frac{|{a}_{2013}|}{{a}_{2013}}$+$\frac{|{a}_{2014}|}{{a}_{2014}}$=2000,
∴当i的取值从1到2014中,有两个是负数,其他的全是正数,
∵当ai、i都是正数时,一次函数y=aix+i经过一、二、三象限,当ai是负数,i是正数时,一次函数y=aix+i经过一、二、四象限,
∴一次函数y=aix+i(i=1,2,…,2014)的图象经过一、二、四象限的ai的概率是:$\frac{2}{2014}=\frac{1}{1007}$,
故答案为:$\frac{1}{1007}$.
点评 本题考查概率公式、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com