精英家教网 > 初中数学 > 题目详情
(1999•西安)A是⊙O的直径EF上的一点,半径OB⊥EF,BA的延长线与⊙O相交于另一点C,若=
(1)求∠B的度数;
(2)过C作⊙O的切线CD和OA的延长线交于点D.求证:AC=CD=AD.

【答案】分析:(1)本小题主要是通过弧与所对圆心角之间的关系来解决问题的
(2)此题主要是通过证明△ADC为等边三角形来解决问题.
解答:(1)解:连接CO,
是半圆,

∴∠EOC=3O°.
∵OB=OC,
∴∠B=∠BCO.
∴∠B=(90°-∠EOC)
=(90°-30°)
=30°.(4分)

(2)证明:∵∠DAC=∠BAO=90°-∠B=60°,
∠DCA=90°-∠OCA,
∠OBA=∠OCA=30°,
∴∠DAC=∠DCA=60°.
于是∠CDA=60°.(8分)
∴△ACD是等边三角形.
即AC=CD=AD.(10分)
点评:本题主要是考查学生对圆的切线性质,圆心角和弧之间的关系,等边三角形的判定的掌握程度.解题的关键是发现圆心角和弧之间的关系,从而解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:1999年全国中考数学试题汇编《圆》(05)(解析版) 题型:解答题

(1999•西安)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《三角形》(03)(解析版) 题型:解答题

(1999•西安)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(1999•西安)已知抛物线y=3x2+3x.
(1)通过配方,将抛物线的表达式写成y=a(x+h)2+k的形式(要求写出配方过程);
(2)求出抛物线的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(1999•西安)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年陕西省西安市中考数学试卷(解析版) 题型:填空题

(1999•西安)已知一个一次函数当自变量x=3时,函数值y=5,当x=-4时,y=-9.那么,这个一次函数的解析式为   

查看答案和解析>>

同步练习册答案