【题目】已知∠MON=90°,线段AB长为6cm,AB两端分别在OM、ON上滑动,以AB为边作正方形ABCD,对角线AC、BD相交于点P,连结OC.
(1)求证:无论点A、点B怎样运动,点P都在∠AOB的平分线上;
(2)若OP=4 ,求OA的长.
(3)求OC的最大值(提示:取AB的中点Q,连接CQ、OQ,运用两点之间,线段最短)
【答案】
(1)
解:如图,作PE⊥OM、PF⊥ON垂足分别为E、F,
则∠PEA=∠PFB=90°=∠EOF,
∴∠EPF=90°,
∵ABCD是正方形,
∴PA=PB,且∠APB=90°,
∴∠APE+∠BPE=∠BPF+∠BPE,
即∠APE=∠BPF,
在△AEP和△BFP中,
,
∴△PAE≌△PBF(AAS),
∴PE=PF,
即点P在∠AOB的平分线上
(2)
解:∵四边形OEPF是正方形,OP=4 ,
∴OE=PE=4,
又∵Rt△APB中,AB=6,
∴PA=3 ,
∴Rt△AEP中,AE= = ,
∴OA=OE+AE=4+ 或OA=OE﹣AE=4﹣
(3)
解:如图,取AB的中点Q,连接OQ,CQ,OC,
∵AB长度不变,BC长度不变,
∴Rt△AOB中,OQ= AB=3,
Rt△BCQ中,CQ= =3 ,
∵OQ+CQ≥OC,
∴当O,C,Q三点共线时,OC有最大值,
OC最大值=OQ+QC=3+3 .
【解析】(1)作PE⊥OM、PF⊥ON垂足分别为E、F,根据AAS判定△PAE≌△PBF,即可得出PE=PF,进而得到点P在∠AOB的平分线上;(2)根据四边形OEPF是正方形,OP=4 ,可得OE=PE=4,再根据Rt△APB中,AB=6,可得PA=3 ,进而得到Rt△AEP中,AE= ,据此可得OA的长;(3)取AB的中点Q,连接OQ,CQ,OC,根据AB长度不变,BC长度不变,可得Rt△AOB中,OQ= AB=3,Rt△BCQ中,CQ=3 ,再根据OQ+CQ≥OC,可得当O,C,Q三点共线时,OC有最大值,进而得到OC最大值=OQ+QC=3+3 .
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
小丁在研究数学问题时遇到一个定义:对于按固定顺序的个数: , , , , ,称为数列, , , , ,其中为整数且.
定义.
例如,若数列, , , , ,则.
根据以上材料,回答下列问题:
()已知数列, , ,求.
()已知数列, , , , 中个数均为非负数,且,直接写出的最大值和最小值.
()已知数列, , , ,其中, , , ,为个整数,且, , ,直接写出所有可能的数列中至少两种.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com