【题目】如图,矩形的各边分别平行于轴或轴,甲乙分别由点同时出发,沿矩形的边作环绕运动甲按逆时针方向以个单位/秒的速度匀速运动,乙按顺时针方向以个单位/秒的速度匀速运动,则甲、乙运动后的第次相遇地点的坐标是( )
A.B.
C.D.
【答案】A
【解析】
利用行程问题中的相遇问题,由于矩形的边长为4和2,乙是甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
矩形的边长为4和2,因为乙是甲的速度的2倍,时间相同,甲与乙的路程比为1:2,由题意知:
①第一次相遇甲与乙行的路程和为12×1,甲行的路程为12×=4,乙行的路程为12×=8,在BC边相遇;
②第二次相遇甲与乙行的路程和为12×2,甲行的路程为12×2×=8,乙行的路程为12×2×=16,在DE边相遇;
③第三次相遇甲与乙行的路程和为12×3,甲行的路程为12×3×=12,乙行的路程为12×3×=24,在A点相遇;
此时甲乙回到原出发点,
则每相遇三次,甲乙回到出发点,
∵2019÷3=673,
故第2019次相遇地点的是回到出发点A,
此时相遇点A的坐标为:(2,0),
故选:A.
科目:初中数学 来源: 题型:
【题目】三张卡片的正面分别写有数字3、3、4,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.
(1)从中任意抽取一张卡片,该卡片上数字是3的概率为_______;
(2)学校将组织歌咏比赛,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字后放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于6,小刚去;若和等于7,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作:如图,在正方形 ABCD 中,P 是 CD 上一动点(与 C,D 不重合),使三角板的直角顶点与点 P 重合,并且一条直角边始终经过点 B,另一直角边与正方形的某一边所在直线交于点 E.
(1)根据操作结果,画出符合条件的图形;
(2)观察所画图形,写出一个与△BPC 相似的三角形,并说明理由;
(3)当点 P 位于 CD 的中点时,直接写出(2)中两对相似三角形的相似比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.
(1)求反比例函数的解析式;
(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。四位同学各自发表了下述见解:
甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;
乙:只要指针连续转六次,一定会有一次停在6号扇形;
丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;
丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。
其中,你认为正确的见解有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一类随机事件概率的计算方法:设试验结果落在某个区域S中的每一点的机会均等,用A表示事件“试验结果落在S中的一个小区域M中”,那么事件A发生的概率P(A)=. 有一块边长为30cm的正方形ABCD飞镖游戏板,假设飞镖投在游戏板上的每一点的机会均等.求下列事件发生的概率:
(1)在飞镖游戏板上画有半径为5cm的一个圆(如图1),求飞镖落在圆内的概率;
(2)飞镖在游戏板上的落点记为点O,求△OAB为钝角三角形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线BC的解析式为y=﹣x+6.
(1)求抛物线的解析式;
(2)点M为线段BC上方抛物线上的任意一点,连接MB,MC,点N为抛物线对称轴上任意一点,当M到直线BC的距离最大时,求点M的坐标及MN+NB的最小值;
(3)在(2)中,点M到直线BC的距离最大时,连接OM交BC于点E,将原抛物线沿射线OM平移,平移后的抛物线记为y′,当y′经过点M时,它的对称轴与x轴的交点记为H.将△BOE绕点B逆时针旋转60°至△BO1E1,再将△BO1E1沿着直线O1H平移,得到△B1O2E2,在平面内是否存在点F,使以点C,H,B1,F为顶点的四边形是以B1H为边的菱形.若存在,直接写出点B1的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com