精英家教网 > 初中数学 > 题目详情

如图,AT是⊙O的切线,AB是⊙O的弦,∠B=55°,则∠BAT等于


  1. A.
    45°
  2. B.
    40°
  3. C.
    35°
  4. D.
    30°
C
分析:连接OA,则∠AOB=2∠BAT,∠OAT=90°,故可用∠BAT表示出∠OAB的度数,再根据三角形的内角和定理解答即可.
解答:解:连接OA,则∠AOB=2∠BAT,OA⊥AT,
∵OA⊥AT,
∴∠OAT=90°,
∴∠OAB=90°-∠BAT,
∵∠B+∠AOB+∠OAB=180°,
∴∠B+2∠BAT+90°-∠BAT=180°,
解得∠BAT=35°.
故选C.
点评:本题考查的是切线的性质及三角形内角和定理,解答此类问题往往通过作辅助线连接圆心和切点,利用垂直关系求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的外公切线,B、C为切点.AT为内公精英家教网切线,AT与BC相交于点T.延长BA、CA,分别与两圆交于点E、F.
(1)求证:AB•AC=AE•AF;
(2)若AT=2,⊙O1与⊙O2的半径之比为1:3,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在直角坐标系中,正方形OABC的两边OC、OA分别在x轴、y轴上,A点的坐标为(0、4).
(1)将正方形OABC绕点O顺时针旋转30°,得到正方形ODEF,边DE交BC于G.求G点的坐标;
(2)如图,⊙O1与正方形ABCO四边都相切,直线MQ切⊙O1于点P,分别交y轴、x轴、线段BC于点M、N、Q.求证:O1N平分∠MO1Q.
精英家教网
(3)若H(-4、4),T为CA延长线上一动点,过T、H、A三点作⊙O2,AS⊥AC交O2于F.当T运动时(不包括A点),AT-AS是否为定值?若是,求其值;若不是,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的外公切线,B、C为切点.AT为内公切线,AT与BC相交于点T.延长BA、CA,分别与两圆交于点E、F.
(1)求证:AB•AC=AE•AF;
(2)若AT=2,⊙O1与⊙O2的半径之比为1:3,求AE的长.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(13)(解析版) 题型:解答题

(2002•哈尔滨)如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的外公切线,B、C为切点.AT为内公切线,AT与BC相交于点T.延长BA、CA,分别与两圆交于点E、F.
(1)求证:AB•AC=AE•AF;
(2)若AT=2,⊙O1与⊙O2的半径之比为1:3,求AE的长.

查看答案和解析>>

科目:初中数学 来源:2002年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(2002•哈尔滨)如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的外公切线,B、C为切点.AT为内公切线,AT与BC相交于点T.延长BA、CA,分别与两圆交于点E、F.
(1)求证:AB•AC=AE•AF;
(2)若AT=2,⊙O1与⊙O2的半径之比为1:3,求AE的长.

查看答案和解析>>

同步练习册答案