精英家教网 > 初中数学 > 题目详情
12.如图,点P是△ABC中AB边上的一点,过P作直线(不与AB重合)截△ABC,使截得的三角形与原三角形相似,满足条件的直线最多有4条.

分析 两个角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似.利用相似三角形的判定方法分别得出符合题意的图形即可.

解答 解:第一种情况如图1所示,过点P作PD∥BC,
理由:因为一条直线平行于三角形的一边,且与三角形的另两边相交,则所得三角形与原三角形相似.
第二种情况如图2所示,以PA为角的一边,在△ABC内作∠APE=∠C,
理由:因为△APE与△ACB中还有公共角∠A,所以这两个三角形也相似.

第三种情况如图3所示,过点P作PF∥AC,
理由:因为一条直线平行于三角形的一边,且与三角形的另两边相交,则所得三角形与原三角形相似.
第四种情况如图4所示,作∠BPG=∠C,
理由:因为△GBP与△ACB中还有公共角∠B,所以这两个三角形也相似.

故答案为:4.

点评 本题主要考查了相似三角形的判定定理的运用,熟练掌握相似三角形的判定方法是解题关键.解题时注意分类思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.在数-4.3,-$\frac{3}{5}$,|0|,-(-5),-(-$\frac{22}{7}}$),-|-3|,-(+5)中,-4.3,-$\frac{3}{5}$,|0|,-|-3|,-(+5)是非正数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.
(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;
(2)如果点P的坐标是(-a,0),其中0<a<3,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.我们规定:线段外一点和这条线段两个端点连线所构成的角叫做这个点对这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C对线段AB的视角.如图2,在平面直角坐标系xOy中,已知点D(0,4),E(0,1).
(1)⊙P为过D,E两点的圆,F为⊙P上异于点D,E的一点.
①如果DE为⊙P的直径,那么点F对线段DE的视角∠DFE为90度;
②如果点F对线段DE的视角∠DFE为60度;那么⊙P的半径为$\sqrt{3}$;
(2)点G为x轴正半轴上的一个动点,当点G对线段DE的视角∠DGE最大时,求点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).
例如,从A到B记为:A→B(+l,+3);从C到D记为:C→D(+1,-2),
回答下列问题:
(1)如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.
(2)若点A运动的路线依次为:A→M(+2,+3),M→N(+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M、N、P、Q的位置.
(3)在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是m+p=5;n与q满足的数量关系是n+q=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若坐标平面上点P(a,1)与点Q(-4,b)关于x轴对称,则(  )
A.a=4,b=-1B.a=-4,b=1C.a=-4,b=-1D.a=4,b=1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列说法错误的是(  )
A.27的立方根是3B.(-1)2016是最小的正整数
C.实数与数轴上的点一一对应D.两个无理数的积一定是无理数

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.若△ABC和△DEF的面积分别为S1、S2
(1)如图①,AC=DF,BC=DE,∠C=30°,∠D=150°,比较S1与S2的大小为C;
A.S1>S2B.S1<S2        C.S1=S2D.不能确定
(2)说明(1)的理由.
(3)如图②,在△ABC与△DEF中,AC=DF,BC=DE,∠C=30°,点E在以D为圆心,DE长为半径的半圆上运动,∠EDF的度数为α,比较S1与S2的大小(直接写出结果,不用说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.绝对值大于1而小于13的所有整数的和为0.

查看答案和解析>>

同步练习册答案