精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,动点P到点S(1,),与过T点(0,)且平行于x轴的直线距离相等,设点P的坐标为(x,y)
(1)试求出y与x函数关系式;
(2)设点P运动到x轴上时为点A、B(点A在点B的左边),运动到最高点为点C;运动到y轴上时为点D;求出A、B、C、D四点的坐标;
(3)在(2)的条件下,M为线段OB(点O为坐标原点)上的一个动点,过x轴上一点G(-2,0)作DM的垂线,垂足为H,直线GH交y轴于点N,当M点在线段OB上运动时,现给出两个结论:①∠GNM=∠CDM;②∠MGN=∠DCM,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.

【答案】分析:(1)根据题意画出图形,再利用勾股定理建立关系式即得问题答案.
(2)由图形可知点P运动到x轴上时为点A(-1-,0),B(-1+,0)运动到最高点为点C(1,3);运动到y轴上时为D(0,2).
(3)①的结论是正确的;由于OG=OD=2,且GH⊥DM,则可证得△NGO≌△MDO,由此可得∠GNO=∠DMO;而ON=OM(全等三角形的对应边),故∠ONM=45;过D作DT⊥CP于T,根据C、D的坐标可知CT=DT=1,即∠CDT=45°,而∠TDM、∠DMO是平行线DT、AB的内错角,故∠TDM=∠DMO=∠GNO,因此∠TDM、∠GNO都加上45°后仍然相等,即∠GNM=∠CDM.
解答:解:(1)过点S作SD⊥ox,并反向延长SD交过T点的直线于B点,过点P作PA⊥AT,PC⊥BS.
∴CS=y-,CP=x-1,AP=
∴在Rt△SCP中SP=
又∵SP=AP
=
∴y=-x2+2x+2;

(2)令y=0得0=-x2+2x+2.
解得x1=(-1-,x2=(-1+).
∴A(-1-,0)B(-1+,0).
把y=-x2+2x+2配方得:y=-(x-1)2+3,
∴C点的坐标为(1,3),
令x=0,y=2,
∴D点的坐标为D(0,2).
∴A(1-,0),B(1+,0),C(1,3),D(0,2);

(3)∠GNM=∠CDM是正确的.
证明:∵过A、B、C的抛物线解析式为y=-x2+2x+2;
∴D(0,2),
∵G(-2,0),
∴OG=OD,
由题意∠GON=∠DOM=90°,
又∵∠GNO=∠DNH,
∴∠NGO=∠MDO,
∴△NGO≌△MDO,
∴∠GNO=∠DMO,OM=ON,
∴∠ONM=∠NMO=45°,
过点D作DT⊥CP于T;
∴DT=CT=1,
∴∠CDT=∠DCT=45°,
由题意可知DT∥AB,
∴∠TDM=∠DMO,
∴∠TDM+45°=∠DMO+45°=∠GNO+45°,
∴∠TDM+∠CDT=∠GNO+∠ONM,
即:∠GNM=∠CDM.
点评:此题考查了勾股定理,函数解析式的确定、全等三角形及等腰直角三角形的判定和性质等知识,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案