精英家教网 > 初中数学 > 题目详情
(1999•哈尔滨)已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB和小圆相切于点C,过点C作大圆的弦DE,使DE⊥OA,垂足为F,DE交小圆于另一点G.求证:AF•AO=DC•DG.

【答案】分析:连接OC,根据相交弦定理可得,AC•BC=DC•CE,又AB是小圆的切线,故OC⊥AB,根据垂径定理,可得AC=BC,故AC2=DC•CE;又因为OC⊥AB,DE⊥OA,所以有∠AFC=∠ACO=90°,且∠CAF=∠OAC,那么△ACF∽△AOC,可得比例线段AC:AF=AO:AC,即AC2=AO•AF;于是有AO•AF=DC•CE;而DE⊥OA,利用垂径定理,可得DF=EF,CF=FG,等量加等量和相等,可得DG=CE,等量代换可得AO•AF=DC•DG.
解答:证明:连接OC,(1分)
∵AB是小圆切线,
∴OC⊥AB,
∴AC=BC,(1分)
∵AB与DE相交于C,
∴CA•CB=CD•CE,(1分)
∴AC2=CD•CE,①
∵OC⊥AC,CF⊥OA,
∴△ACO∽△AFC,
=
∴AC2=AF•AO,②
∵OF⊥DE,
∴CF=GF,DF=EF,
∴DF+FG=EF+CF,
∴DG=EC,③(2分)
由①、②、③,可得AF•AO=DC•DG.
点评:本题利用了垂径定理、相似三角形的判定和性质、相交弦定理、等量代换等知识.
练习册系列答案
相关习题

科目:初中数学 来源:1999年全国中考数学试题汇编《三角形》(03)(解析版) 题型:解答题

(1999•哈尔滨)已知:如图,在平面直角坐标系中,以点A(4,0)为圆心,AO为半径的圆交x轴于点B.设M为x轴上方的圆长交y轴于点D.
(1)当点P在弧OM上运动时,设PC=x,=y,求y与x之间的函数关系式及自变量的取值范围;
(2)当点P运动到某一位置时,恰使OB=3OD,求此时AC所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(1999•哈尔滨)已知:如图,在平面直角坐标系中,以点A(4,0)为圆心,AO为半径的圆交x轴于点B.设M为x轴上方的圆长交y轴于点D.
(1)当点P在弧OM上运动时,设PC=x,=y,求y与x之间的函数关系式及自变量的取值范围;
(2)当点P运动到某一位置时,恰使OB=3OD,求此时AC所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(1999•哈尔滨)已知:如图,⊙O1与⊙O2外切于点O,以直线O1O2为x轴,O为坐标原点,建立平面直角坐标系.在x轴上方的两圆的外公切线AB与⊙O1相切于点A,与⊙O2相切于点B,直线AB交y轴于点c,若OA=3,OB=3.
(1)求经过O1、C、O2三点的抛物线的解析式;
(2)设直线y=kx+m与(1)中的抛物线交于M、N两点,若线段MN被y轴平分,求k的值;
(3)在(2)的条件下,点D在y轴负半轴上.当点D的坐标为何值时,四边形MDNC是矩形?

查看答案和解析>>

科目:初中数学 来源:1999年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(1999•哈尔滨)已知:如图,在平面直角坐标系中,以点A(4,0)为圆心,AO为半径的圆交x轴于点B.设M为x轴上方的圆长交y轴于点D.
(1)当点P在弧OM上运动时,设PC=x,=y,求y与x之间的函数关系式及自变量的取值范围;
(2)当点P运动到某一位置时,恰使OB=3OD,求此时AC所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:填空题

(1999•哈尔滨)函数y=中,自变量x的取值范围是   

查看答案和解析>>

同步练习册答案