精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=-x2+bx+c与x轴交于点A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).
(1)求抛物线的解析式;
(2)求出该抛物线的对称轴及顶点D的坐标;
(3)若点P在抛物线上运动(点P异于点D),当△PAB的面积和△DAB面积相等时,求点P的坐标.
分析:(1)把点A、C的坐标代入抛物线,解方程组求出b、c即可得解;
(2)把抛物线解析式整理成顶点式形式,然后写出对称轴和顶点D的坐标即可;
(3)根据等底等高的三角形的面积相等可得点P的纵坐标与点D的纵坐标的绝对值相等,然后代入抛物线解析式计算即可得解.
解答:解:(1)由题意,得
-1+b+c=0
c=-3

解得
b=4
c=-3

∴抛物线的解析式为y=-x2+4x-3;

(2)∵y=-x2+4x-3=-(x-2)2+1,
∴对称轴为直线x=2,
顶点D的坐标为(2,1);

(3)∵△PAB的面积和△DAB面积相等,
∴点P的纵坐标与点D的纵坐标的绝对值相等,
∵点P异于点D,
∴点D的纵坐标为-1,
当y=-1时,-x2+4x-3=-1,
整理得,x2-4x+2=0,
解得x1=2+
2
,x2=2-
2

点P的坐标为(2+
2
,-1)或(2-
2
,-1).
点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数的对称轴与顶点坐标的求解,等底等高的三角形的面积相等,(3)确定出点P的纵坐标是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案