精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是________°.

40
分析:连接OB,先由圆周角定理得出∠BOC的度数,再由等腰三角形的性质求出∠DOC的度数,根据直角三角形的性质即可得出结论.
解答:解:连接OB,
∵∠A与∠BOC是所对的圆周角与圆心角,∠A=50°,
∴∠BOC=2∠A=2×50°=100°,
∵OB=OC,OD⊥BC,
∴∠DOC=∠BOC=×100°=50°,
在Rt△DOC中,
∵∠ODC=90°,∠DOC=50°,
∴∠OCD=90°-∠DOC=90°-50°=40°.
故答案为:40.
点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案