精英家教网 > 初中数学 > 题目详情
2.|-6|=(  )
A.$\frac{1}{6}$B.6C.-6D.±6

分析 原式利用绝对值的代数意义计算即可得到结果.

解答 解:原式=6,
故选B

点评 此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.小李创办了一家报刊零售点,对经营的某种晚报,他提供了如下信息:
①买进每份0.20元,卖出0.30元;
②在一个月内(以30天计),其中有20天每天可以卖出200份,其余的10天每天就只能卖出120份;
③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸以每份0.10元退回给报社.
(1)第一个月为试营业阶段,他每天买进该晚报100份,这个月利润多少元?
(2)第二个月每天买进该晚报150份时,这个月利润多少元?
(3)设每天从报社买进晚报x份(120≤X≤200)时,月利润为y元,试写出y和x的函数关系式,并求出月利润的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,抛物线y=-x2+bx+c经过点A(3,0)和点B(2,3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=$\frac{1}{3}$.
(1)求这条抛物线的表达式及对称轴;
(2)联结AB、BC,求∠ABC的正切值;
(3)若点D在x轴下方的对称轴上,当S△DBC=S△ADC时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.($\sqrt{2}$-1.414)0+($\frac{1}{3}$)-1-$\sqrt{27}$+2cos30°=4-2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在平面直角坐标系中,点A是函数y=$\frac{k}{x}$(x<0)图象上的点,过点A作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,直线y=2x+6与坐标轴分别交于P,Q两点,过函数图象上的点A分别作两坐标轴的垂线,垂足分别为B,C.
(1)直接写出△OPQ的面积为9.
(2)点A的坐标可以用含有x的式子表示为(x,2x+6),若点A在线段PQ上,矩形ABOC的周长为8,求点A坐标;
(3)若点A在直线PQ上,以A、B、O、C为顶点的矩形周长为为16,直接写出所有符合条的点A坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为65和33,则△EDF的面积为16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.

(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、
PA,并直接写出四边形AQCP的周长;
(2)在图2中画出一个以线段AC为一条对角线、面积为15的菱形ABCD,且点B和点D均在小正方形的顶点上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在?ABCD中,AB=5,AD=8,BE平分∠ABC,交AD于点E,CF平分∠BCD,交AD于点F.
(1)求EF;
(2)你能发现BE与CF有什么关系吗?并证明之.

查看答案和解析>>

同步练习册答案