精英家教网 > 初中数学 > 题目详情
已知:如图,在大蜀山山顶有一斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座安徽卫视发射塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°,求:
(1)坡顶A到地面PQ的距离;
(2)发射塔BC的高度.(结果保留为整数)
sin76°≈0.97,cos76°≈0.24,tan76°≈4.0,tan14°≈0.525.
(1)过点A作AH⊥PQ,垂足为点H.
∵斜坡AP的坡度为1:2.4,∴
AH
PH
=
5
12

设AH=5k,则PH=12k,
由勾股定理,得AP=13k.
∴13k=26.解得k=2.∴AH=10.
答:坡顶A到地面PQ的距离为10米.

(2)延长BC交PQ于点D.
∵BC⊥AC,ACPQ,∴BD⊥PQ.
∴四边形AHDC是矩形,CD=AH=10,AC=DH.
∵∠BPD=45°,∴PD=BD.
设BC=x,则x+10=24+DH.∴AC=DH=x-14.
在Rt△ABC中,tan76°=
BC
AC

x
x-14
≈4.0,
解得x=
56
3
≈19,
答:古塔BC的高度约为19米.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC中,CD、CE分别是AB边上高和中线,CE=BE=1,又CE的中垂线过点B,且交AC于点F,则CD+BF的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD是一个拦河坝的截面图,坝高为6米.背水坡AD的坡角α为45°,为了提高河坝的抗洪能力,防汛指挥部决定加固河坝,若坝顶CD加宽0.8米,新的背水坡EF的坡度为1:1.4.河坝总长度为500米.
(1)求完成该工程需要多少立方米方土?
(2)某工程队在加固600立方米土后,采用新的加固模式,这样每天加固方数是原来的2倍,结果只用11天完成了大坝加固的任务.请你求出该工程队原来每天加固多少立方米土?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一段防洪大堤,其横断面为梯形ABCD,ABDC,斜坡AD的坡度i1=1:1.2,斜坡BC的坡度i2=1:0.8,大堤顶宽DC为6米.为了增强抗洪能力,现将大堤加高,加高部分的横断面为梯形DCFE,EFDC,点E、F分别在AD、BC的延长线上(如图).当新大堤顶宽EF为3.8米时,大堤加高了几米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知在Rt△ABC中,∠ACB=90°,CD是边AB上的中线,AC=6,cos∠ACD=
2
3
,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一次实践活动中,某课堂学习小组用测倾器,皮尺测量旗杆的高度,他们进行了如下的测量(如图所示):
(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MBC=23°;
(2)量出测点A到旗杆底部N的水平距离AN=22.7米;
(3)量出测倾器的高度AB=1.2米,根据以上数据,请你求出旗杆的高度(精确到0.1米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在航线L的两侧分别有观测点A和B,点A到航线L的距离为2km,点B位于点A北偏东60°方向且与A相距5km处.现有一艘轮船正沿该航线自西向东航行,在C点观测到点A位于南偏东54°方向,航行10分钟后,在D点观测到点B位于北偏东70°方向.
(1)求观测点B到航线L的距离;
(2)求该轮船航线的速度(结果精确到0.1km/h,参考数据:
3
=1.73
,sin54°=0.81cos54°=0.59,tan54°=1.38,sin70°=0.94,cos70°=0.34,tan70°=2.75)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)用签字笔画ADBC(D为格点),连接CD;
(2)线段CD的长为______;
(3)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角是______,则它所对应的正弦函数值是______;
(4)若E为BC中点,则tan∠CAE的值是______.

查看答案和解析>>

同步练习册答案