精英家教网 > 初中数学 > 题目详情

已知△ABC,下列条件:①∠A+∠B=∠C,②∠A=∠B=数学公式∠C;③∠A=90°-∠C;④∠A-∠B=90°,可以判定为直角三角形的条件有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
分析:根据三角形内角和定理及直角三角形的性质对各小题进行逐一判断即可.
解答:①∵△ABC中,∠A+∠B=∠C,∴2∠C=180°,∴∠C=90°,∴此三角形是直角三角形,故本小题正确;
②设∠A=∠B=x,则∠C=2x,∵∠A+∠B+∠C=180°,x+x+2x=180°,解得x=45°,2x=90°,∴此三角形是直角三角形,故本小题正确;
③∵∠A=90°-∠C,∴∠A+∠C=90°,∵∠A+∠B+∠C=180°,∴∠B=180°-(∠A+∠C)=90°,,∴此三角形是直角三角形,故本小题正确;
④∵∠A-∠B=90°,∴∠A>90°,∴△ABC是钝角三角形,故本小题错误.
故选C.
点评:本题考查的是三角形内角和定理及直角三角形的性质,熟知三角形的内角和是180°是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)解方程:
2
x
-
2
x(x+1)
=1

(2)已知△ABC(如图1),请用直尺(没有刻度)和圆规,作一个平行四边形,使它的三个顶点恰好是△ABC的三个顶点(只需作一个,不必写作法,但要保留作图痕迹)
精英家教网
(3)根据题意,完成下列填空:
如图2,L1与L2是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3直线L3,那么这3条直线最多可有
 
个交点;如果在这个平面内再画第4条直线L4,那么这4条直线最多可有
 
个交点.由此我们可以猜想:在同一平面内,6条直线最多可有
 
个交点,n( n为大于1的整数)条直线最多可有
 
个交点(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图所示,下列说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知△ABC关于直线MN对称,则下列说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知△ABC中,D、E分别是边AB、AC上的点,∠A=80°,∠C=70°,∠ADE=30°.求证:DE∥BC.
(2)阅读并补全下列命题的证明过程:
求证:在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行.
已知:如图,直线AB、CD、EF在同一平面内,AB⊥EF于点M,CD⊥EF于点N.
求证:
AB∥CD
AB∥CD

证明:∵AB⊥EF(已知),
∴∠AME=90°(垂直的定义).
∵CD⊥EF(已知),
∴∠CNE=90°(垂直的定义).
∵∠
AME
AME
=∠
CNE
CNE

AB
AB
CD
CD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与CD交于点G,AC与BD交于点F,连接FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正确结论的个数(  )

查看答案和解析>>

同步练习册答案