精英家教网 > 初中数学 > 题目详情
如图,已知点F在AB上,且AF:BF=1:2,点D是BC延长线上一点,BC:CD=2:1,连接FD与AC交于点N,求FN:ND的值.
2:3

试题分析:过点F作FE∥BD,交AC于点E,求出=,得出FE=BC,根据已知推出CD=BC,根据平行线分线段成比例定理推出=,代入化简即可.
解:过点F作FE∥BD,交AC于点E,
=
∵AF:BF=1:2,
=
=
即FE=BC,
∵BC:CD=2:1,
∴CD=BC,
∵FE∥BD,
===
即FN:ND=2:3.
证法二、连接CF、AD,

∵AF:BF=1:2,BC:CD=2:1,
==
∵∠B=∠B,
∴△BCF∽△BDA,
==,∠BCF=∠BDA,
∴FC∥AD,
∴△CNF∽△AND,
==

点评:本题考查了平行线分线段成比例定理的应用,注意:平行线分的线段对应成比例,此题具有一定的代表性,但是一定比较容易出错的题目.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:?ABCD中,E是BA边延长线上一点,CE交对角线DB于点G,交AD边于点F.
求证:CG2=GF•GE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图(1),用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图(2)所示的四边形ABCD、若AE=4,CE=3BE,那么这个四边形的面积是 _________ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在四边形ABCD与A′B′C′D′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,∠D=∠D′,且=,则四边形 ABCD ∽四边形 ABCD ,且四边形ABCD与A′B′C′D′的相似比是  ,四边形ABCD与A′B′C′D′的面积比是  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有(  )

A.4对                   B.5对                  C.6对                  D.7对

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是(  )
A.B.C.﹣1D.+1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知a、b、c、d四条线段依次成比例,其中a=3cm,b=(x﹣1)cm,c=5cm,d=(x+1)cm.求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知,则的值是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是       
 

查看答案和解析>>

同步练习册答案