精英家教网 > 初中数学 > 题目详情
(2012•兰州)已知二次函数y=a(x+1)2-b(a≠0)有最小值1,则a,b的大小关系为(  )
分析:根据函数有最小值判断出a的符号,进而由最小值求出b,比较a、b可得出结论.
解答:解:∵二次函数y=a(x+1)2-b(a≠0)有最小值,
∴抛物线开口方向向上,即a>0;
又最小值为1,即-b=1,∴b=-1,
∴a>b.
故选A.
点评:本题考查的是二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•兰州)已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•兰州)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=
2
3
x2+bx+c经过点B,且顶点在直线x=
5
2
上.
(1)求抛物线对应的函数关系式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•兰州)如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是
-
2
≤x≤
2
且x≠0
-
2
≤x≤
2
且x≠0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•兰州)已知x是一元二次方程x2-2x+1=0的根,求代数式
x-3
3x2-6x
÷(x+2-
5
x-2
)
的值.

查看答案和解析>>

同步练习册答案