精英家教网 > 初中数学 > 题目详情

如图(1),小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图(2)),量得他们的斜边长为10cm,较小锐角为30.再将这两张三角纸片摆成如图(3)的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图(3)至图(6)中统一用F表示)

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.

(1)将图(3)中△ABF沿BD向右平移到图(4)的位置,使点B与点F重合,请你求出平移的距离;

(2)将图(3)中△ABF绕点F顺时针方向旋转30°到图(5)的位置,A.F交DE于点G,请你求出线段FG的长度;

(3)将图(3)中的△ABF沿直线AF翻折到图(6)的位置,AB,交DE丁点H,请证明:AH=DH.

 

 

【答案】

(1)5;(2);(3)证明见试题解析.

【解析】

试题分析:(1)根据题意,分析可得:图形平移的距离就是线段BF的长,进而在Rt△ABC中求得BF=5cm,即图形平移的距离是5cm;

(2)在Rt△EFD中,求出FD的长,根据直角三角形的性质,可得:FG=FD,即可求得FG的值;

(3)借助平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,容易证明.

试题解析:(1)图形平移的距离就是线段BF的长,又∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,∴BF=5cm,∴平移的距离为5cm;

(2)∵∠A1FA=30°,∴∠GFD=60°,∠D=30°,∴∠FGD=90°,在Rt△EFD中,ED=10cm,∵FD=,∴FG=cm;

(3)△AHE与△DHB1中,∵∠FAB1=∠EDF=30°,∵FD=FA,EF=FB=FB1,∴FD﹣FB1=FA﹣FE,即AE=DB1,又∵∠AHE=∠DHB1,∴△AHE≌△DHB1(AAS),∴AH=DH.

考点:1.旋转的性质;2.全等三角形的判定与性质;3.含30度角的直角三角形;4.平移的性质.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)
精英家教网
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH﹦DH.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•玉溪)在一个阳光明媚,微风习习的周末,小明和小强一起到聂耳文化广场放风筝,放了一会儿,两个人争吵起来:
小明说:“我的风筝飞得比你的高”.
小强说:“我的风筝引线比你的长,我的风筝飞得更高”.
谁的风筝飞得更高呢?于是他们将两个风筝引线的一段都固定在地面上的C处(如图),现已知小明的风筝引线(线段AC)长30米,小强的风筝引线(线段BC)长36米,在C处测得风筝A的仰角为60°,风筝B的仰角为45°,请通过计算说明谁的风筝飞得更高?
(结果精确到0.1米,参考数据:
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其它各边的长.(两个三角板分别是等腰直角三角形和含30°的直角三角形)
若已知CD=2,求AC的长.
请你先阅读并完成解法一,然后利用锐角三角函数的知识写出与解法一不同的解法.
解法一:在Rt△ABC中,∵BD=CD=2 
∴由勾股定理,BC=
22+22
=2
2

在Rt△ABC中,设AB=x
∵∠BCA=30°,∴AC=2AB=2x
由勾股定理,AB2+BC2=AC2,即x2+(2
2
)2=(2x)2

∵x>0,解得x=
2
6
3
2
6
3
.∴AC=
4
6
3
4
6
3

解法二:

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,小明将一张正方形纸片剪去一个宽为3cm的长条后,再从剩下的长方形纸片上剪去一个宽为4cm的长条,如果两次剪下的长条面积正好相等,求原正方形的面积.

查看答案和解析>>

同步练习册答案