精英家教网 > 初中数学 > 题目详情

在△ABC中,AB=AC,AD是BC边上的高,点O在线段AD上.

(1)如图1,连接OB、OC,求证:△BDO≌△CDO;
(2)已知⊙O与直线AB、AC都相切,切点分别为E、F,当AD=12,CD=5,OD=数学公式时,求证:⊙O与直线BC相切.

证明:(1)∵AB=AC,AD是BC边上的高,
∴BD=CD,∠ODB=∠ODC=90°,
在△OBD和△OCD

∴△BDO≌△CDO(SAS);
(2)如图,
∵AD=12,CD=5,OD=
∴AC===13,OA=AD-OD=12-=
∵⊙O与直线AC相切于F,
∴OF⊥AC,
∴∠AFO=90°,
而∠OAF=∠CAD,
∴△OAF∽△CAD,
∴OF:CD=OA:AC,即OF:5=:13,
∴OF=
∴OD=OF,
而OD⊥BC,
∴⊙O与直线BC相切.
分析:(1)根据等腰三角形的性质由AB=AC,AD是BC边上的高得到BD=CD,然后根据“SAS”可判断△BDO≌△CDO;
(2)先利用勾股定理计算出AC=13,再计算出OA=,然后根据切线的性质得OF⊥AC,易证△OAF∽△CAD,则OF:CD=OA:AC,即OF:5=:13,可计算出OF=
于是有OD=OF,而OD⊥BC,根据切线的判定方法即可得到⊙O与直线BC相切.
点评:本题考查了圆的切线的判定与性质:经过半径的外端点与半径垂直的直线为圆的切线;圆的切线垂直于过切点的半径.也考查了等腰三角形的性质、全等三角形的判定与性质以及三角形相似的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案