1£®Èçͼ£¬Ö±Ïßy=$\frac{\sqrt{3}}{3}$x-$\sqrt{3}$ÓëxÖá½»ÓÚµãB£¬ÓëyÖá½»ÓÚµãC£¬Å×ÎïÏßy=ax2+bx-$\sqrt{3}$¾­¹ýµãA¡¢B¡¢C£¬ÇÒµãA×ø±êÊÇ£¨-1£¬0£©£¬µãDÊÇÖ±ÏßBCÏ·½Å×ÎïÏßÉϵÄÒ»¶¯µã£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±ËıßÐÎABDCÃæ»ý×î´óʱ£¬ÇëÇó³öµãDµÄ×ø±êºÍËıßÐÎABDCÃæ»ýµÄ×î´óÖµ£¿
£¨3£©ÉèÅ×ÎïÏߵĶԳÆÖáÓëxÖáÏཻÓÚµãE£¬ÔÚÉäÏßCEÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¡÷ABPÊÇÖ±½ÇÈý½ÇÐΣ¿Èç¹û´æÔÚ£¬ÇëÖ±½Óд³öAPµÄ³¤¶È£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃBµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝƽÐÐÓÚyÖáÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄ×Ý×ø±ê¼ä½ÏСµÄ×Ý×ø±ê£¬¿ÉµÃDFµÄ³¤£¬¸ù¾ÝÃæ»ýµÄºÍ²î£¬¿ÉµÃ¶þ´Îº¯Êý£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃ¹ØÓÚnµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃnµÄÖµ£¬ÔÙ¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉy=$\frac{\sqrt{3}}{3}$x-$\sqrt{3}$£¬µÃy=0ʱ£¬x=3£¬Bµã×ø±êΪ£¨3£¬0£©£¬
½«A¡¢Bµã×ø±ê´úÈ뺯Êý½âÎöʽ£¬µÃ
$\left\{\begin{array}{l}{a-b-\sqrt{3}=0}\\{9a+3b-\sqrt{3}=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=\frac{\sqrt{3}}{3}}\\{b=-\frac{2\sqrt{3}}{3}}\end{array}\right.$£¬
y=$\frac{\sqrt{3}}{3}$x2-$\frac{2\sqrt{3}}{3}$x-$\sqrt{3}$£»
£¨2£©Èçͼ1£¬¹ýµãD×÷DE¡ÍxÖáÓÚµãE½»BCÓÚFµã£¬
ÉèDµãµÄ×ø±êΪ£¨m£¬$\frac{\sqrt{3}}{3}$m2-$\frac{2\sqrt{3}}{3}$m-$\sqrt{3}$£©µãFµÄ×ø±êΪ£¨m£¬$\frac{\sqrt{3}}{3}$m-$\sqrt{3}$£©
DF=£¨$\frac{\sqrt{3}}{3}$m-$\sqrt{3}$£©-£¨$\frac{\sqrt{3}}{3}$m2-$\frac{2\sqrt{3}}{3}$m-$\sqrt{3}$£©=-$\frac{\sqrt{3}}{3}$m2+$\sqrt{3}$m£¬
SËıßÐÎABDC=S¡÷DFB+S¡÷DFC+S¡÷ABC
=$\frac{1}{2}$DF•OB+$\frac{1}{2}$¡Á4¡Á$\sqrt{3}$
=$\frac{1}{2}$£¨-$\frac{\sqrt{3}}{3}$m2+$\sqrt{3}$m£©¡Á3+2$\sqrt{3}$
=-$\frac{\sqrt{3}}{2}$£¨m-$\frac{3}{2}$£©2+$\frac{25\sqrt{3}}{8}$£¨0£¼m£¼3£©£¬
¡àµ±m=$\frac{3}{2}$ʱ£¬ËıßÐÎABDCµÄÃæ»ýÈ¡µÃ×î´óÖµ$\frac{25\sqrt{3}}{8}$£¬´ËʱµãDµÄ×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{5\sqrt{3}}{4}$£©£»
£¨3£©y=$\frac{\sqrt{3}}{3}$x2-$\frac{2\sqrt{3}}{3}$x-$\sqrt{3}$=$\frac{\sqrt{3}}{3}$£¨x-1£©2-$\frac{4\sqrt{3}}{3}$£¬
¶Ô³ÆÖáÓÚxÖáµÄ½»µãEΪ£¨1£¬0£©£¬
CEµÄ½âÎöʽΪy=$\sqrt{3}$x-$\sqrt{3}$£¬
ÉèPµã×ø±êΪ£¨n£¬$\sqrt{3}$n-$\sqrt{3}$£©£¬PÔÚCEµÄÉäÏßÉÏ£¬¡à¡ÏPAB£¼90¡ã£¬
AP2=£¨n+1£©2+£¨$\sqrt{3}n-\sqrt{3}$£©2£¬PB2=£¨n-3£©2+£¨$\sqrt{3}$n-$\sqrt{3}$£©2
¢Ùµ±¡ÏAPB=90¡ãʱ£¬AP2+PB2=AB2£¬
¼´£¨n+1£©2+£¨$\sqrt{3}$n-$\sqrt{3}$£©2+£¨n-3£©2+£¨$\sqrt{3}$n-$\sqrt{3}$£©2=42£¬
»¯¼ò£¬µÃ8n2-16n=0£¬
½âµÃn1=0£¬n2=2£¬
µ±n=0ʱ£¬AP=$\sqrt{£¨0+1£©^{2}+£¨-\sqrt{3}£©^{2}}$=2£¬
µ±n=2ʱ£¬AP=$\sqrt{£¨2+1£©^{2}+£¨2\sqrt{3}-\sqrt{3}£©^{2}}$=2$\sqrt{3}$£»
¢Úµ±¡ÏABP=90¡ãʱ£¬BP¡ÍABÓÚB£¬µÃ
n=3£¬
AP=$\sqrt{£¨3+1£©^{2}+£¨3\sqrt{3}-\sqrt{3}£©^{2}}$=2$\sqrt{7}$£¬
×ÛÉÏËùÊö£ºAPµÄ³¤Îª2£¬2$\sqrt{3}$£¬2$\sqrt{7}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬½â£¨1£©µÄ¹Ø¼üÊÇ´ý¶¨ÏµÊý·¨£¬½â£¨2£©µÄ¹Ø¼üÊÇÀûÓÃÃæ»ýµÄºÜ²îµÃ³ö¶þ´Îº¯Êý£¬ÓÖÀûÓÃÁ˶þ´Îº¯ÊýµÄÐÔÖÊ£»½â£¨3£©µÄ¹Ø¼üÊǹ´¹É¶¨ÀíµÃ³ö¹ØÓÚnµÄ·½³Ì£¬Òª·ÖÀàÌÖÂÛ£¬ÒÔ·ÀÒÅ©£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Éè·½³Ìx2-£¨a+10£©x+10a-1=0ÓÐÁ½¸öÕûÊý¸ù£¬ÔòÕûÊýa=10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®½«Ê½×Ó4x+£¨3x-x£©=4x+3x-x£¬4x-£¨3x-x£©=4x-3x+x·Ö±ð·´¹ýÀ´£¬ÄãµÃµ½Á½¸öÔõÑùµÄµÈʽ£¿
£¨1£©±È½ÏÄãµÃµ½µÄµÈʽ£¬ÄãÄÜ×ܽáÌíÀ¨ºÅµÄ·¨ÔòÂð£¿
£¨2£©¸ù¾ÝÉÏÃæÄã×ܽá³öµÄÌíÀ¨ºÅ·¨Ôò£¬²»¸Ä±ä¶àÏîʽ-3x5-4x2+3x3-2µÄÖµ£¬°ÑËüµÄºóÁ½Ïî·ÅÔÚ£º
¢ÙÇ°Ãæ´øÓС°+¡±ºÅµÄÀ¨ºÅÀ
¢ÚÇ°Ãæ´øÓС°-¡±ºÅµÄÀ¨ºÅÀ
¢Û˵³öËüÊǼ¸´Î¼¸Ïîʽ£¬²¢°´xµÄ½µÃÝÅÅÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆË㣺|3-¦Ð|+£¨-$\frac{1}{2}$£©0-$\root{3}{-27}$+£¨0.1£©-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èçͼ£¬µÈÑüRt¡÷ABCÖУ¬¡ÏB=90¡ã£¬AB=1£¬½«Rt¡÷ABCÈÆµãC°´Ë³Ê±Õë·½ÏòÐýת£¬µÃµ½Rt¡÷A¡äB¡äC£¬ÇÒB¡¢C¡¢B¡äÈýµã¹²Ïߣ¬Ôò±ßABɨ¹ýµÄÃæ»ý£¨Í¼ÖÐÒõÓ°²¿·Ö£©ÊÇ$\frac{3}{8}¦Ð$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÎªÁËÂäʵ½ÌÓý²¿¡°Á¢µÂÊ÷ÈË¡¢ÓýÈËΪ±¾¡±µÄ½ÌѧÀíÄî£¬È«ÃæÊµÊ©ËØÖʽÌÓý£¬ÔöǿѧÉúµÄ×ÔÐÅÐÄ£¬´Ù½øÑ§ÉúÈ«Ãæ·¢Õ¹£¬Ä³ÖÐѧ¼Ò³¤Ñ§Ð£Ëæ»ú³éÈ¡Á˲¿·Ö¼Ò³¤¿ªÕ¹ÁË¡°Äú×î¹ØÐĺ¢×ÓÄÄ·½Ãæ³É³¤¡±µÄÖ÷Ìâµ÷²é£¬ÒªÇó²ÎÓëµ÷²éµÄ¼Ò³¤ÔÚ¡°½¡¿µ°²È«¡±¡¢¡°ÈÕ³£Ñ§Ï°¡±¡¢¡°Ï°¹ßÑø³É¡±¡¢¡°Çé¸ÐÆ·ÖÊ¡±ËĸöÏîÄ¿ÖÐѡȡһÏ²¢¶Ôµ÷²é½á¹û½øÐÐÁËͳ¼Æ£¬µÃµ½ÁËÈçͼËùʾµÄͳ¼ÆÍ¼£¨²»ÍêÕû£©£®Çë¸ù¾Ýͳ¼ÆÍ¼ÌṩµÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©²ÎÓë±¾´Î³éÑùµ÷²éµÄѧÉú¼Ò³¤ÈËÊýÓÐ100ÈË£¬ÉÈÐÎͳ¼ÆÍ¼ÖУ¬¡°ÈÕ³£Ñ§Ï°¡±ËùÔÚµÄÉÈÐÎÔ²ÐĽǶÈÊýΪ54¡ã£»
£¨2£©Ç뽫ÌõÐÎͳ¼ÆÍ¼²¹³äÍêÕû£»
£¨3£©ÈôȫУ¹²ÓÐ3000ÃûѧÉú¼Ò³¤£¬¾Ý´Ë¹À¼Æ£¬×î¹Ø×¢Ñ§Éú¡°½¡¿µ°²È«¡±µÄ¼Ò³¤ÓжàÉÙÈË£¿
£¨4£©×ÛºÏÒÔÉϵ÷²é½á¹û£¬½áºÏ×ÔÉíÈÏʶ£¬Äã¸üÏ£ÍûµÃµ½ÒÔÉÏËĸöÏîÄ¿ÖÐÄÄЩ·½ÃæµÄ¹Ø×¢£¿Ì¸Ì¸ÄãµÄ¿´·¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼ÆË㣺£¨-2£©0-£¨-$\frac{1}{3}$£©2¡Á3+£¨-1£©3¡Â$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚÂäʵ¡°Ð¡×éºÏ×÷ѧϰ£¬µ±Ìôï±ê¼ì²â¼°ÆÀ¼Û¡±ÒªÇóÖУ¬Ä³°àËĸöС×éÉè¼ÆµÄ×é»Õͼ°¸Èçͼ£¬ÕâËĸöͼ°¸ÖУ¬¼ÈÊÇÖá¶Ô³ÆÍ¼ÐÎÓÖÊÇÖÐÐĶԳÆÍ¼ÐεÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®$\left\{\begin{array}{l}{x-a£¾0}\\{3-2x£¾0}\end{array}\right.$ÕûÊý½âÓÐ6¸ö£¬ÔòaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸