精英家教网 > 初中数学 > 题目详情
在四边形ABCD中,如果AB=CD,∠B=∠D,那么四边形ABCD一定是平行四边形吗?如果是平行四边形,请给出证明;如果不一定是平行四边形,请举出反例.
考点:平行四边形的判定
专题:
分析:平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组邻角分别相等的四边形可能为梯形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形;
解答:解:一组对边相等,一组对角相等的四边形不能证明另一组对边也相等或平行,故不能判定平行四边形;
如图所示:
点评:此题主要考查了平行四边形的判定.在判定平行四边形时,应仔细观察题目所给的条件,推导分析,看是否符合平行四边形的判定定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是一次函数的图象,则它的解析式最有可能是(  )
A、y=
3
2
x
B、y=-
2
3
x
C、y=
3
2
x-2
D、y=1-
2
3
x

查看答案和解析>>

科目:初中数学 来源: 题型:

用代入法解方程组:
(1)
y=2x-3
3x+2y=8

(2)
2x-y=5
3x+4y=2

查看答案和解析>>

科目:初中数学 来源: 题型:

定义:如图1,射线OP与原点为圆心,半径为1的圆交于点P,记∠xOP=α,则点P的横坐标叫做角α的余弦值,记作cosα;点P的纵坐标叫做角α的正弦值,记作sinα;纵坐标与横坐标的比值叫做角α的正切值,记作tanα.
如:当α=45°时,点P的横坐标为cos45°=
2
2
,纵坐标为sin45°=
2
2
,即P(
2
2
2
2
).又如:在图2中,∠xOQ=90°-α(α为锐角),PN⊥y轴,QM⊥x轴,易证△OQM≌△OPN,则Q点的纵坐标sin(90°-α)等于点P的横坐标cosα,得sin(90°-α)=cosα.

解决以下四个问题:
(1)当α=60°时,求点P的坐标;
(2)当α是锐角时,则cosα+sinα
 
1(用>或<填空),(sinα)2+(cosα)2=
 

(3)求证:sin(90°+α)=cosα(α为锐角);
(4)求证:tan
α
2
=
1-cosα
sinα
(α为锐角).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线l1y=
4
3
x
与直线l2:y=kx+b相交于点A,点A的横坐标为3,直线l2交x轴、y轴于分别于点E、点B,且|OA|=
1
2
|OB|.
(1)试求△AOE的面积是多少?
(2)若将直线l1沿着x轴向左平移3个单位,交y轴于点C,交直线l2于点D.试求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=kx+b经过点A(-3,0),且与直线y=-3x交于点P,O是坐标原点,S△OAP=9,求该直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,将两个正方形的一个顶点重合放置,若∠AOD=40°,则∠COB=
 
 度;
(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;
(3)如图3,将三个方形的一个顶点重合放置,若OF平分∠DOB,那么OE平分∠AOC吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知|3x+y-0.5|+(x+2y+1.5)2=0,求代数式(x-y)(x-2y)-3x(
1
3
x-y)+(2x+y)(2x-y)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a、b、c、d满足方程组
3a+b+c+d=1
a+3b+c+d=9
a+b+3c+d=9
a+b+c+3d=5
,则abcd=
 

查看答案和解析>>

同步练习册答案