精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是边长为1的正方形,点F在BC延长线上,且CF=AC,AF与DC交于点E.求:
(1)CF的长度;  
(2)∠AEC的度数.

(1)解:∵四边形ABCD是正方形,
∴AB=BC=1,∠B=90°,
由勾股定理得:AC===
∵CF=AC,
∴CF=

(2)解:∵四边形ABCD是正方形,
∴∠BCD=∠D=90°,
∴∠ACB=∠DCB=×90°=45°,∠DCF=90°,
∵AC=CF,
∴∠F=∠CAF,
∵∠F+∠CAF=∠ACB=45°,
∴∠F=×45°=22.5°,
∴∠AEC=∠F+∠DCF=22.5°+90°=112.5°.
答:∠AEC的度数是112.5°.
分析:(1)根据勾股定理求出AC,即可求出答案;
(2)求出∠ACB=45°,求出∠F=22.5°,根据三角形的外角性质得出∠AEC=∠F+∠DCF,代入求出即可.
点评:本题考查了正方形性质,三角形的外角性质和勾股定理的应用,主要考查学生灵活运用正方形性质进行推理和计算的能力,本题是一道比较好的题目,难度也不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案