精英家教网 > 初中数学 > 题目详情
在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性。
问题1:以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系(如图1)。
问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S'+S''与S的关系(如图2)。
问题3:以直角三角形的三边为直径向形外作半圆,探究S1+S2与S3的关系(如图3)。

解:探究1:由等边三角形的性质知:
S1=a2,S2=b2,S3=c2
则S1+S2=(a2+b2),
因为a2+b2=c2,所以S1+S2=S3。
探究2:由等腰直角三角形的性质知:
S'=a2,S''=b2,S=c2
则S'+S''=(a2+b2),
因为a2+b2=c2,所以S'+S''=S。
探究3:由圆的面积计算公式知:
S1=πa2,S2=πb2,S3=πc2
则S1+S2=π(a2+b2),
因此a2+b2=c2,所以S1+S2=S3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.
精英家教网
问题1:以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系(如图1).
问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).
问题3:以直角三角形的三边为直径向形外作半圆,探究S1+S2与S3的关系(如图3).

查看答案和解析>>

科目:初中数学 来源:2014浙教版八年级上册(专题训练 状元笔记)数学:第2章 特殊三角形 浙教版 题型:044

在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.

问题1:以直角三角形的三边为边向外作等边三角形,探究与S的关系(如图1);

问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究与S的关系(如图2);

问题3:以直角三角形的三边为直径向形外作半圆,探究与S的关系(如图3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.

问题1:以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系(如图1).
问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).
问题3:以直角三角形的三边为直径向形外作半圆,探究S1+S2与S3的关系(如图3).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.

精英家教网

问题1:以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系(如图1).
问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).
问题3:以直角三角形的三边为直径向形外作半圆,探究S1+S2与S3的关系(如图3).

查看答案和解析>>

同步练习册答案