【题目】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M.
(1)求∠E的度数.
(2)求证:M是BE的中点.
【答案】
(1)解:∵三角形ABC是等边△ABC,
∴∠ACB=∠ABC=60°,
又∵CE=CD,
∴∠E=∠CDE,
又∵∠ACB=∠E+∠CDE,
∴∠E= ∠ACB=30°;
(2)证明:连接BD,
∵等边△ABC中,D是AC的中点,
∴∠DBC= ∠ABC= ×60°=30°
由(1)知∠E=30°
∴∠DBC=∠E=30°
∴DB=DE
又∵DM⊥BC
∴M是BE的中点.
【解析】(1)根据等边三角形的性质得出∠ACB的度数,由CE=CD得出∠E=∠CDE,再根据三角形的一个外角等于和它不相邻的两内角之和,求出∠E的度数。
(2)抓住已知条件等边△ABC中,D是AC的中点,由等腰三角形的三线合一的性质,可知应连接BD,得出BD平分∠ABC,求出∠DBC的度数,继而证得DB=DE,再根据等腰三角形的性质即可证得结论。
【考点精析】关于本题考查的等边三角形的性质,需要了解等边三角形的三个角都相等并且每个角都是60°才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,39=19683,……它们的个位数字有什么规律,用你发现的规律直接写出92019的个位数字是( )
A.3B.9C.7D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点 P(x, y) 为平面直角坐标系 xOy 内一点,xy>0 ,且点 P 到x轴,y 轴的距离分别为 2,5,则点 P 的坐标为( )
A.2, 5 或-2,-5B.5, 2 或-5,-2
C.5, 2 或-2,-5D.2, 5 或-5,-2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )
A.5人,7人B.5人,11人C.5人,12人D.7人,11人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线直线与双曲线交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).
(1)求直线和双曲线的解析式;
(2)求点C的坐标,并结合图象直接写出时x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com