精英家教网 > 初中数学 > 题目详情
如图,点A,B的坐标分别为(2,-5)和(5,-5),抛物线y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D横坐标的最大值为
10
10
分析:当抛物线y=a(x-m)2+n的顶点在线段AB的A点上时,点C的横坐标最小,把A的坐标代入即可求出a的值,因为抛物线y=a(x-h)2+k的顶点在线段AB上运动,所以抛物线的a是定值.根据题意可知当抛物线的顶点运动到B时,D的横坐标最大,把B的坐标和a的值代入即可求出二次函数的解析式,再求出y=0时x的值即可求出答案.
解答:解:当抛物线y=a(x-m)2+n的顶点在线段AB的A点上时,点C的横坐标最小,
把A(2,-5)代入得:-5=a(x-2)2-5,
把C(-3,0)代入得:0=a(-3-2)2-5,
解得:a=
1
5

即:y=
1
5
(x-2)2-5,
∵抛物线y=a(x-m)2+n的顶点在线段AB上运动,
∴抛物线的a永远等于
1
5

当抛物线的顶点运动到B时,D的横坐标最大,把a=
1
5
和顶点B(5,-5)代入y=a(x-m)2+n得:y=
1
5
(x-5)2-5,
当y=0时,0=
1
5
(x-5)2-5,
解得,x=10或x=0(不合题意,舍去).
所以点D的横坐标最大值为10.
故答案为10.
点评:本题主要考查了二次函数的性质,用待定系数法求二次函数的解析式,用直接开平方法解一元二次方程等知识点,理解题意并根据已知求二次函数的解析式是解此题的关键,此题是一个比较典型的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,点A、B的坐标分别为(1,2)、(4,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为
(4,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点D、B的坐标分别为(0,0),(3,0)将△0AB绕O点按逆时针方向旋转90°到精英家教网△OA′B′的位置
(1)画出△OA′B′;
(2)写出点A的坐标;
(3)求四边形OA′B′B的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德惠市一模)如图,点A、B的坐标分别为(1,0)、(0,1),点P是第一象限内直线y=-x+3上的一个动点,当点P的横坐标逐渐增大时,四边形OAPB的面积(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O、B的坐标分别为(0,0)(3,0),将△OAB绕O点按逆时针方向旋转90°得到△OA′B′.
(1)画出△OA′B′;
(2)写出点A′、B′的坐标.

查看答案和解析>>

同步练习册答案