精英家教网 > 初中数学 > 题目详情
如图,抛物线y=x2+bx+c与x轴的右交点为A,顶点D在矩形OABC的边BC上,当y≤0时,x的取值范围是1≤x≤5.
(1)求b,c的值;
(2)直线y=mx+n经过抛物线的顶点D,该直线在矩形OABC内部分割出的三角形的面积记为S,求S与m的函数关系式,并写出自变量m的取值范围.
(1)∵抛物线y=x2+bx+c当y≤0时,x的取值范围是1≤x≤5.
∴抛物线与x轴交于(1,0),(5,0)
1+b+c=0
25+5b+c=0

解得:b=-6 c=5;

(2)∵b=-6 c=5,
∴抛物线的解析式为y=x2-6x+5=(x-3)2-4,
∴点D的坐标为(3,-4),
∵直线y=mx+n经过抛物线的顶点D,
∴3m+n=-4,
即:n=-3m-4,
∴直线y=mx+n的解析式为y=mx-3m-4,
设直线DE与AB交于点E,
∴E点的坐标为(5,2m-4),
∴BD=2 AB=4 AE=4-2m BE=2m,
∴S=
1
2
BD•BE=±2m,
∵点E的纵坐标-5<2m-4<0
解得:-
1
2
<m<2且m≠0
∴自变量的取值范围为:-
1
2
<m<2且m≠0,
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图①,若二次函数y=
3
6
x2+bx+c的图象与x轴交于A(-2,0),B(3,0)两点,点A关于正比例函数y=
3
x的图象的对称点为C.
(1)求b、c的值;
(2)证明:点C在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数y=
3
x的图象于点D,连结AC,交正比例函数y=
3
x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-
2
3
x2+bx+c
的图象经过B、C两点.
(1)直接写出点B、点C坐标;
(2)求该二次函数的解析式;
(3)结合函数的图象探索,直接写出不等式-
2
3
x2+bx+c≥0
的解集为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知过坐标原点的抛物线经过A(x1,0),B(x2,3)两点,且x1、x2是方程x2+5x+6=0两根(x1>x2),抛物线顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求点E的坐标;
(3)P是抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P、M、O为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC中,∠A=90°,AB=6,AC=8,D是AB上一动点,DEBC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形B′DEC′,B′C′与AB、AC分别交于点M、N.
(1)证明:△ADE△ABC;
(2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式.当x为何值时y有最大值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=
1
2
x2-3x+c
交x轴正半轴于A、B两点,交y轴于C点,过A、B、C三点作⊙D.若⊙D与y轴相切.
(1)求c的值;
(2)连接AC、BC,设∠ACB=α,求tanα;
(3)设抛物线顶点为P,判断直线PA与⊙D的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA.O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA的任意平面上的抛物线如图1所示,建立平面直角坐标系(如图2),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+
5
2
x+
3
2
,请回答下列问题:
(1)花形柱子OA的高度;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=6cm,AD=3cm,点E在边DC上,且DE=4cm.动点P从点A开始沿着A?B?C?E的路线以2cm/s的速度移动,动点Q从点A开始沿着AE以1cm/s的速度移动,当点Q移动到点E时,点P停止移动.若点P、Q同时从点A同时出发,设点Q移动时间为t(s),P、Q两点运动路线与线段PQ围成的图形面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=9-4x2的最大值是______.

查看答案和解析>>

同步练习册答案