精英家教网 > 初中数学 > 题目详情
如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,a)两点,AD⊥轴于点D,BE∥x轴且与y轴交于点E。
(1)求点B的坐标及直线AB的解析式;
(2)判断四边形CBED的形状,并说明理由。

解:(1)∵双曲线过A(3,),
∴k=20,
把B(-5,a)代入,得a=-4,
∴点B的坐标是(-5,-4),
设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,
,解得:
∴直线AB的解析式为:
(2)四边形CBED是菱形,理由如下:
点D的坐标是(3,0),点C的坐标是(-2,0),
∵BE∥轴,
∴点E的坐标是(0,-4),
而CD=5,BE=5,且BE∥CD,
∴四边形CBED是平行四边形,
在Rt△OED中,ED2=OE2+OD2
∴ED==5,
∴ED=CD,
∴□CBED是菱形。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的精英家教网方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM.
(1)求⊙M的半径.
(2)若D为OA的中点,求证:CD是⊙M的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM并延长交x轴于N.
(1)求⊙M的半径.
(2)求线段AC的长.
(3)若D为OA的中点,求证:CD是⊙M的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知直线AB与CD相交于点O,OB平分∠EOD,∠1+∠2=90°,
问:图中的线是否存在互相垂直的关系,若有,请写出哪些线互相垂直,并说明理由;若无,直接说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,已知直线AB与x轴、y轴交于A、B两点与反比例函数的图象交于C点和D点,若OA=3,点C的横坐标为-3,tan∠BAO=
23

(1)求反比例函数与一次函数的解析式;
(2)求△COD的面积;
(3)若一次函数的值大于反比例函数的值,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB与CD相交于点O,OE⊥CD,OF平分∠BOE,若∠AOC=∠EOF,
(1)求∠AOC的度数;
(2)写出∠EOF的余角和补角.

查看答案和解析>>

同步练习册答案