精英家教网 > 初中数学 > 题目详情
(2012•泰兴市一模)等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.
(1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?
(2)若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?
(3)在(2)的条件下,是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形移动了多少时间?若不存在,请说明理由.

【答案】分析:(1)当△ABC第一次与圆相切时,应是AC与圆相切.如图,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′′于F.设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l.由切线长定理,以及直角三角形的性质可求得CD的值,进而求得CC′的值,从而求得点C运动的时间,也就有了点运动的时间,点B移动的距离也就可求得了.
(2)△ABC与⊙O从开始运动到最后一次相切时,应为AB与圆相切,路程差为6,速度差为1,故从开始运动到最后一次相切的时间为6秒.
(3)若圆能在△ABC的内部时,则存在;若圆O不能在三角形的内部,则不存在;即求在(2)条件下,AC与圆的位置关系即可.
解答:
解:(1)设第一次相切时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,
交B′C′于F.
设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l.
由切线长定理可知C’E=C′D,设C′D=x,则C′E=x,易知C′F=x.
x+x=1,
∴x=-1,
∴CC’=5-1-(-1)=5-
∴点C运动的时间为(5-)÷(2+0.5)=2-
∴点B运动的距离为(2-)×2=4-

(2)∵△ABC与⊙O从开始运动到最后一次相切时,是AB与圆相切,且圆在AB的左侧,故路程差为6,速度差为1,
∴从开始运动到最后一次相切的时间为6秒.

(3)∵△ABC与⊙O从开始运动到第二次相切时,路程差为4,速度差为1,
∴从开始运动到第二次相切的时间为4秒,此时△ABC移至△A″B″C″处,
A″B″=1+4×=3.
连接BO并延长交A″C″于点P,易证B″P⊥A″C″,且OP=-=<1.
∴此时⊙O与A″C″相交,
∴不存在.
点评:本题考查了直线与圆的相切,相交的概念,利用了切线长定理,等腰直角三角形的性质,
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•泰兴市一模)先化简,再求值:
a2+3a
a2-4
÷
a+3
a-2
-
2
a+2
,其中a=
3

查看答案和解析>>

科目:初中数学 来源:2011年重庆市綦江县中考数学模拟试卷(解析版) 题型:解答题

(2012•泰兴市一模)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连接DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.
(1)当x为何值时,△APD是等腰三角形;
(2)若设BE=y,求y关于x的函数关系式;
(3)若BC的长可以变化,是否存在点P,使得PQ经过点C?若不存在,请说明理由,若存在并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.

查看答案和解析>>

科目:初中数学 来源:2010年山东省枣庄市山亭区翼云中学中考数学模拟试卷(解析版) 题型:解答题

(2012•泰兴市一模)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连接DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.
(1)当x为何值时,△APD是等腰三角形;
(2)若设BE=y,求y关于x的函数关系式;
(3)若BC的长可以变化,是否存在点P,使得PQ经过点C?若不存在,请说明理由,若存在并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.

查看答案和解析>>

科目:初中数学 来源:2009年河北省唐山市中考数学二模试卷(解析版) 题型:填空题

(2012•泰兴市一模)如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=    度.

查看答案和解析>>

同步练习册答案