精英家教网 > 初中数学 > 题目详情

如图,如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.若KG2=KD•GE,sinE=数学公式,AK=数学公式,FG长度是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:如答图1,连接OG.根据切线性质及CD⊥AB,可以推出连接∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;如答图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;
如答图3所示,连接OG,OC.首先求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.
解答:解:(1)如答图1,连接OG.
∵EG为切线,∴∠KGE+∠OGA=90°,
∵CD⊥AB,∴∠AKH+∠OAG=90°,
又OA=OG,∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
连接GD,如答图2所示.
∵KG2=KD•GE,即=
又∠KGE=∠GKE,
∴△GKD∽△EGK,
∴∠E=∠AGD,又∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
连接OG,OC,如答图3所示.
sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2
即(3t)2+t2=(22,解得t=
设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,
由勾股定理得:OH2+CH2=OC2
即(r-3t)2+(4t)2=r2,解得r=
∵EF为切线,∴△OGF为直角三角形,
在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH==
∴FG===
故选A.
点评:此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O的直径,弦AD、BC交于点M,连CD、BD,若AB=1,则图中长度等于sin∠CBD的线段是(  )
A、AMB、BMC、CDD、BD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:
①点D为AC的中点;②S△O′OE=
1
2
S△AOC;③
AC
=2
AD
;④四边形O′DEO是菱形.其中正确的精英家教网结论是
 
.(把所有正确的结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)如图,AB是⊙O的直径,C是AB延长线上一点,点D在⊙O上,且∠A=30°,∠ABD=2∠BDC.
(1)求证:CD是⊙O的切线;
(2)过点O作OF∥AD,分别交BD、CD于点E、F.若OB=2,求OE和CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,直线AD与⊙O相切于点A,点C在⊙O上,∠DAC=∠ACD,直线DC与AB的延长线交于点E.AF⊥ED于点F,交⊙O于点G.
(1)求证:DE是⊙O的切线;
(2)已知⊙O的半径是6cm,EC=8cm,求GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,点C在⊙O上,∠BAC=43°,点P在线段OB上运动,设∠ACP=x,则x的取值范围是
43°≤x≤90°
43°≤x≤90°

查看答案和解析>>

同步练习册答案