精英家教网 > 初中数学 > 题目详情
(2013•绥化)如图,在Rt△ABC中,∠C=90°,AC=
3
,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是(  )
分析:先根据勾股定理计算出AB=2,根据含30度的直角三角形三边的关系得到∠BAC=30°,在根据折叠的性质得BE=BA=2,∠BED=∠BAD=30°,DA=DE,由于AD⊥ED得BC∥DE,所以∠CBF=∠BED=30°,在Rt△BCF中可计算出CF=
3
3
,BF=2CF=
2
3
3
,则EF=2-
2
3
3
,在Rt△DEF中计算出FD=1-
3
3
,ED=
3
-1,然后利用S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE计算即可.
解答:解:∵∠C=90°,AC=
3
,BC=1,
∴AB=
AC2+BC2
=2,
∴∠BAC=30°,
∵△ADB沿直线BD翻折后,点A落在点E处,
∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,
∵AD⊥ED,
∴BC∥DE,
∴∠CBF=∠BED=30°,
在Rt△BCF中,CF=
BC
3
=
3
3
,BF=2CF=
2
3
3

∴EF=2-
2
3
3

在Rt△DEF中,FD=
1
2
EF=1-
3
3
,ED=
3
FD=
3
-1,
∴S△ABE=S△ABD+S△BED+S△ADE
=2S△ABD+S△ADE
=2×
1
2
BC•AD+
1
2
AD•ED
=2×
1
2
×1×(
3
-1)+
1
2
×(
3
-1)(
3
-1)
=1.
故选A.
点评:本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件
AE=CB
AE=CB
,使得△EAB≌△BCD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线
OC
OC
上.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•绥化)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则
AH
HC
的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

同步练习册答案