精英家教网 > 初中数学 > 题目详情
6.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是(  )
A.6B.3C.2D.1.5

分析 取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.

解答 解:取线段AC的中点G,连接EG,如图所示.
∵△ABC为等边三角形,且AD为△ABC的对称轴,
∴CD=CG=$\frac{1}{2}$AB=3,∠ACD=60°,
∵∠ECF=60°,
∴∠FCD=∠ECG.
在△FCD和△ECG中,$\left\{\begin{array}{l}{FC=EC}\\{∠FCD=∠ECG}\\{DC=GC}\end{array}\right.$,
∴△FCD≌△ECG(SAS),
∴DF=GE.
当EG∥BC时,EG最小,
∵点G为AC的中点,
∴此时EG=DF=$\frac{1}{2}$CD=$\frac{3}{2}$.
故选D.

点评 本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF=GE.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.在代数式$\frac{x}{\sqrt{x+1}}$中,x的取值范围是(  )
A.x≥-1B.x>-1C.x>-1且x≠0D.x≠0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)$\frac{3{x}^{2}{y}^{4}}{8{z}^{3}}$•$\frac{10{z}^{2}}{-6{x}^{2}{y}^{2}}$;(2)$\frac{4{x}^{2}-{y}^{2}}{3{x}^{2}y}$÷$\frac{2x-y}{xy}$;
(3)$\frac{a+b}{{a}^{2}-{b}^{2}}$•$\frac{{a}^{2}-2ab+{b}^{2}}{ab}$;(4)$\frac{{x}^{2}-4{y}^{2}}{{x}^{2}+6xy+9{y}^{2}}$÷$\frac{2{y}^{2}-xy}{{x}^{2}+3xy}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程:(x-1)2=-2x(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.(Ⅰ)已知两个正数x、y满足x+y=7,则$\sqrt{{x}^{2}+4}$+$\sqrt{{y}^{2}+9}$的最小值为$\sqrt{74}$.此时x的值为$\frac{14}{5}$.(提示:若借助网格或坐标系,就可以从数形结合的角度来看$\sqrt{{x}^{2}+4}$,例如可以把$\sqrt{{3}^{2}+{4}^{2}}$看做边长为3和4的直角三角形的斜边).
(Ⅱ)如图,在每个边长为1的正方形网格中,点A、B均在格点上,且AB=7,请你在线段AB上找到一点P,使AP的长为(Ⅰ)中所求的x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程
(1)4x2-6x-3=0
(2)(x+8)(x+1)=-12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.解方程:(2x+1)(x-1)=8(9-x)-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知方程x2+(m+9)x+2m+6=0的两根的平方和为24,那么m的值等于-9或-5.

查看答案和解析>>

同步练习册答案