精英家教网 > 初中数学 > 题目详情
7.如图,已知EC∥AB,∠EDA=∠ABF.
(1)求证:四边形ABCD是平行四边形;
(2)求证:OA2=OE•OF.

分析 (1)由EC∥AB,∠EDA=∠ABF,可证得∠DAB=∠ABF,即可证得AD∥BC,则得四边形ABCD为平行四边形;
(2)由EC∥AB,可得$\frac{OA}{OE}$=$\frac{OB}{OD}$,由AD∥BC,可得$\frac{OB}{OD}$=$\frac{OF}{OA}$,等量代换得出$\frac{OA}{OE}$=$\frac{OF}{OA}$,即OA2=OE•OF.

解答 证明:(1)∵EC∥AB,
∴∠EDA=∠DAB,
∵∠EDA=∠ABF,
∴∠DAB=∠ABF,
∴AD∥BC,
∵DC∥AB,
∴四边形ABCD为平行四边形;

(2)∵EC∥AB,
∴△OAB∽△OED,
∴$\frac{OA}{OE}$=$\frac{OB}{OD}$,
∵AD∥BC,
∴△OBF∽△ODA,
∴$\frac{OB}{OD}$=$\frac{OF}{OA}$,
∴$\frac{OA}{OE}$=$\frac{OF}{OA}$,
∴OA2=OE•OF.

点评 此题考查了相似三角形的判定与性质,平行四边形的判定,平行线的性质,解题时要注意识图,灵活应用数形结合思想.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.

(1)求抛物线的表达式;
(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;
(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,扇形OAB的圆心角为120°,半径为3,则该扇形的弧长为2π.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1=(n+1)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=$\frac{k}{x}$(k≠0,x>0)过点D.
(1)求双曲线的解析式;
(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列调查中,最适宜采用普查方式的是(  )
A.对我国初中学生视力状况的调查
B.对量子科学通信卫星上某种零部件的调查
C.对一批节能灯管使用寿命的调查
D.对“最强大脑”节目收视率的调查

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.现有一生产季节性产品的企业,有两种营销方案,经测算:方案一一年中获得的每月利润y(万元)和月份x的关系为y=-0.5x2+8x-14,方案二一年中获得的每月利润y(万元)与月份x的关系为y=-x2+14x-24.两个函数部分图象如图所示:
(1)请你指出:方案一月利润对应的图象是②,方案二月利润对应的图象是①;(填序号)
(2)该企业一年中月利润最高可达25万元;
(3)生产季节性产品的企业,当它的产品无利润时就会立即停产,则该企业一年中应停产的月份是方案一是1月份和2月份,方案二是1月份、2月份、12月份;
(4)企业原计划全年使用营销方案二进行销售,为了使全年能获得更高利润,企业应该如何运用其营销方案,使全年总利润最高?并算出去年最高总利润比原计划多多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有4个,若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a大约是(  )
A.25B.20C.15D.10

查看答案和解析>>

同步练习册答案