【题目】如图所示,画一个长和宽分别为、的长方形,并将其按一定的方式进行旋转.
你能得到几种不同的圆柱体?
把一个平面图形旋转成几何体,必须明确哪两个条件?
【答案】(1)四种不同的圆柱体;(2)旋转轴和旋转角这两个条件.
【解析】
(1)分别以长方形的长和宽所在直线为旋转轴,旋转360°;以对边的中点连线所在直线为旋转轴,旋转180°;
(2)需要说明旋转轴和旋转角这两个条件.
解:由于长和宽分别为、的长方形,旋转可得到四种不同的圆柱体;
①一长方形的一条长(或)所在直线为旋转轴,旋转,可得到底面半径为,高为的圆柱体;
②一长方形的一条宽(或)所在直线为旋转轴,旋转一周,可得到底面半径为,高为的圆柱体;
③以长方形的长、的中点、所在直线为旋转轴,旋转,可得到底面半径为,高为的圆柱体;
④以长方形的长、的中点、所在直线为旋转轴,旋转,可得到底面半径为,高为的圆柱体;
把一个平面图形旋转成几何体,需要说明旋转轴和旋转角这两个条件.
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,点E是CD的中点,点F是BC边上的一点,且EF⊥AE.求证:AE平分∠DAF.
小林同学读题后有一个想法,延长FE,AD交于点M,要证AE平分∠DAF,只需证△AMF是等腰三角形即可.请你参考小林的想法,完成此题的证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个直七棱柱,它的底面边长都是,侧棱长是,观察这个棱柱,请回答下列问题:
这个七棱柱共有多少个面,它们分别是什么形状?哪些面的形状、面积完全相同?侧面的面积是多少?由此你可以猜想出棱柱有多少个面?
这个七棱柱一共有多少条棱?它们的长度分别是多少?
这个七棱柱一共有多少个顶点?
通过对棱柱的观察,你能说出棱柱的顶点数与的关系及棱的条数与的关系吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:在正方形ABCD中,以正方形的一个顶点A为顶点,且过对角顶点C的抛物线,称为这个正方形的以A为顶点的对角抛物线.
(1)在平面直角坐标系xOy中,点在轴正半轴上,点C在y轴正半轴上.
①如图1,正方形OABC的边长为2,求以O为顶点的对角抛物线;
②如图2,在平面直角坐标系xOy中,正方形OABC的边长为a,其以O为顶点的对角抛物线的解析式为y= x2 , 求a的值;
(2)如图3,正方形ABCD的边长为4,且点A的坐标为(3,2),正方形的四条对角抛物线在正方形ABCD内分别交于点M、P、N、Q,直接写出四边形MPNQ的形状和四边形MPNQ的对角线的交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P (a,0)(其中a>2),过点P作x轴的垂线,分别交函数和y=x的图象于点C,D.
(1)求点A的坐标;
(2)若OB=CD,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若AB=4+ ,BC=2 ,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月份结算,表示立方米):
价目表 | |
每月用水量 | 单价 |
不超出的部分 | 元 |
超出不超出的部分 | 元 |
超出的部分 | 元 |
注:水费按月结算 |
例:若某户居民月份用水,应收水费为(元).
请根据上表的内容解答下列问题:
填空:若该户居民月份用水,则应收水费________元;
若该户居民月份用水(其中),则应收水费多少元?(用含的表示,并化简)
若该户居民,两个月共用水(月份用水量超过了月份),设月份用水,求该户居民,两个月共交水费多少元?(用含的表示,并化简)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com