精英家教网 > 初中数学 > 题目详情

如图,已知长方形纸片ABCD,AB=1.以点A所在直线为折痕折叠纸片,使点B落在AD上,折痕与BC交于点E;再以点E所在直线为折痕折叠纸片,使点A落在射线BC上,若折痕恰好经过点D,则长方形纸片ABCD的面积约为


  1. A.
    1.4
  2. B.
    1.5
  3. C.
    1.6
  4. D.
    1.7
A
分析:根据折叠的几何性质,第一次折叠得到四边形ABEB′为正方形,得到AE=AB=;根据第二次折叠得到∠AED=∠DEA′,从而
得到∠AED=∠ADE,则AD=AE=,最后利用矩形的面积公式计算即可.
解答:解:如图,
∵以点A所在直线为折痕折叠纸片,使点B落在AD上,折痕与BC交于点E,
∴AB=AB′,
∴四边形ABEB′为正方形,
∴AE=AB=
又∵以点E所在直线为折痕折叠纸片,使点A落在射线BC上,折痕恰好经过点D,
∴∠AED=∠DEA′,
而∠DEA′=∠ADE,
∴∠AED=∠ADE,
∴AD=AE=
∴矩形纸片ABCD的面积=≈1.4.
故选A.
点评:本题考查了折叠的性质:折叠后的图形与原图形全等.也考查了正方形的判定与性质以及等腰三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知长方形纸片ABCD,AB=1.以点A所在直线为折痕折叠纸片,使点B落在AD上,折痕与BC交于点E;再以点E所在直线为折痕折叠纸片,使点A落在射线BC上,若折痕恰好经过点D,则长方形纸片ABCD的面积约为(  )
A、1.4B、1.5C、1.6D、1.7

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互
余的角是
∠B′EM,∠MEB,∠A′NE
∠B′EM,∠MEB,∠A′NE
 (只需填写三个角).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,已知长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互
余的角是________ (只需填写三个角).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互
余的角是______ (只需填写三个角).
精英家教网

查看答案和解析>>

同步练习册答案