精英家教网 > 初中数学 > 题目详情
(2009•铁岭)如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=.判断直线DE与半圆O的位置关系,并证明你的结论.

【答案】分析:直线DE与半圆O相切.连接OD,作OF⊥CD于点F,作DG⊥OE于点G.通过勾股定理求得OF的长,由已知可得到四边形OFDG是矩形,从而便可求得DG,GE的长,再通过勾股定理判定CD⊥DE,从而证明得到直线DE与半圆O相切.
解答:解:直线DE与半圆O相切.(1分)
证法一:
连接OD,作OF⊥CD于点F.
∵CD=6,
∴DF=CD=3.(2分)
∵OE=OB+BE=5+=.(3分)

.(6分)
∵CD∥AB,
∴∠CDO=∠DOE.(7分)
∴△DOF∽△OED,(8分)
∴∠ODE=∠OFD=90°,
∴OD⊥DE,
∴直线DE与半圆O相切.(10分)

证法二:连接OD,作OF⊥CD于点F,作DG⊥OE于点G.
∵CD=6,
∴DF=CD=3.
在Rt△ODF中,OF==4,(3分)
∵CD∥AB,DG⊥AB,OF⊥CD,
∴四边形OFDG是矩形,
∴DG=OF=4,OG=DF=3.
∵OE=OB+BE=5+,GE=OE-OG=,(5分)
在Rt△DGE中,DE=

∴OD2+DE2=OE2,(8分)
∴CD⊥DE.
∴直线DE与半圆O相切.(10分)
点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源:2011年河北省唐山市乐亭县中考数学一模试卷(解析版) 题型:解答题

(2009•铁岭)如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C、A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2009•铁岭)如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C、A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省铁岭市中考数学试卷(解析版) 题型:解答题

(2009•铁岭)如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C、A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《概率》(04)(解析版) 题型:填空题

(2009•铁岭)如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是   

查看答案和解析>>

同步练习册答案