精英家教网 > 初中数学 > 题目详情
3.在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于11.4cm.

分析 由∠C=90°,∠CAB=60°,可得∠B的度数,故BD=2DE=7.6,又AD平分∠CAB,故DC=DE=3.8,由BC=BD+DC求解.

解答 解:∵∠C=90°,∠CAB=60°,
∴∠B=30°,在Rt△BDE中,BD=2DE=7.6,
又∵AD平分∠CAB,
∴DC=DE=3.8,
∴BC=BD+DC=7.6+3.8=11.4cm.
故答案为:11.4cm.

点评 本题主要考查平分线的性质,由已知能够注意到D到AB的距离DE即为CD长,是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.分解因式:-mx2-6mx-9m=-m(x-3)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在平面直角坐标系中,将P(-3,2)向右平移2个单位,再向下平移2个单位得点P′,则P′的坐标为(-1,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知反比例函数y=kx-1(k>0)的图象与一次函数图象y=-x+4交于a、b两点,点a的纵坐标为3.
(1)求反比例函数的解析;
(2)y轴上是否存在一点P,使2∠APB=∠AOB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,∠AOB=90°,且点A,B分别在反比例函数y=$\frac{{k}_{1}}{x}$(x<0),y=$\frac{{k}_{2}}{x}$(x>0)的图象上,且k1,k2分别是方程x2-x-6=0的两根.
(1)求k1,k2的值;
(2)连接AB,求tan∠OBA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F,另一边交CB的延长线于点C.

(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变.
①(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
②若EC=2,试求四边形EFCG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.两个无理数的积一定是(  )
A.不是有理数B.不是无理数C.不是1D.不是0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.阅读理解题:解不等式(x+1)(x-3)>0.
解:根据两数相乘,同号得正,原不等式可以转化为:
$\left\{\begin{array}{l}{x+1>0}\\{x-3>0}\end{array}\right.$或$\left\{\begin{array}{l}{x+1<0}\\{x-3<0}\end{array}\right.$,
解不等式组$\left\{\begin{array}{l}{x+1>0}\\{x-3>0}\end{array}\right.$,得x>3;
解不等式组$\left\{\begin{array}{l}{x+1<0}\\{x-3<0}\end{array}\right.$,得x<-1,
所以原不等式的解集为x>3或x<-1.
问题解决:根据以上阅读材料,解不等式(2x-3)(1+3x)<0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.因式分解
(1)(ab+a)+(b+1)
(2)4x3y-4x2y2+xy3

查看答案和解析>>

同步练习册答案