精英家教网 > 初中数学 > 题目详情
若设a、b为常数,且方程组
2x+3y=2
ax-by=4
ax+by=2
4x-5y=-7
的解相同,则a、b的值为(  )
A、
a=6
b=1
B、
a=-6
b=1
C、
a=6
b=-1
D、
a=-6
b=-1
分析:先把方程2x+3y=2和4x-5y--7联立解方程组,得到x,y的值,再把求出的值代入ax-by=4,ax+by=2,可求出a,b的值,问题的解.
解答:解:联立方程
2x+3y=2
4x-5y=-7

解得
x=-
1
2
y=1

把x=-
1
2
,y=1分别代入ax-by=4,ax+by=2得:
a=-6,b=-1.
故选D.
点评:本题考查了二元一次方程组的同解问题,在解此类问题时要先联立各项系数都明确的方程,再解方程组,把方程组的解代入要求的未知数的方程即可得解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2+kx-
3
4
k2
(k为常数,且k>0).
(1)证明:此抛物线与x轴总有两个交点;
(2)设抛物线与x轴的两个交点分别是M、N.
①M、N两点之间的距离为MN=
 
.(用含k的式子表示)
②若M、N两点到原点的距离分别为OM、ON,且
1
ON
-
1
OM
=
2
3
,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•随州)在一次数学活动课上,老师出了一道题:
(1)解方程x2-2x-3=0
巡视后,老师发现同学们解此道题的方法有公式法、配方法和十字相乘法(分解因式法).接着,老师请大家用自己熟悉的方法解第二道题:
(2)解关于x的方程mx2+(m-3)x-3=0(m为常数,且m≠0).
老师继续巡视,及时观察、点拨大家,再接着,老师将第二道题变式为第三道题:
(3)已知关于x的函数y=mx2+(m-3)x-3(m为常数)
①求证:不论m为何值,此函数的图象恒过x轴、y轴上的两个定点(设x轴上的定点为A,y轴上的定点为C);
②若m≠0时,设此函数的图象与x轴的另一个交点为B.当△ABC为锐角三角形时,观察图象,直接写出m的取值范围.
请你也用自己熟悉的方法解上述三道题.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)如图,在平面直角坐标系xOy中,一次函数y=
5
4
x+m
(m为常数)的图象与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.
(1)求m的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究
M1P•M2P
M1M2
是否为定值,并写出探究过程.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若设a、b为常数,且方程组数学公式数学公式的解相同,则a、b的值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

同步练习册答案