精英家教网 > 初中数学 > 题目详情

在⊙O中,点A、B在⊙O上,且∠AOB=84°,则弦AB所对的圆周角是


  1. A.
    42°
  2. B.
    84°
  3. C.
    42°或138°
  4. D.
    84°或96°
C
分析:由∠AOB=84°,根据圆周角定理,即可求得∠ACB的度数,又由圆的内接四边形的性质,即可求得∠ADB的度数,继而求得答案.
解答:解:如图,∵∠AOB=84°,
∴∠ACB=∠AOB=×84°=42°,
∴∠ADB=180°-∠ACB=138°.
∴弦AB所对的圆周角是:42°或138°.
故选C.
点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:044

如图,在平面直角坐标系 中,点AB分别在轴,轴上,线段OAOB的长(OAOB)是方程的两个根,点C是线段AB的中点,点D在线段OC上,OD=2CD

(1)求点C的坐标;

(2)求直线AD的解析式;

(3)P是直线AD上的点,在平面内是否存在点Q,使以OAPQ为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(黑龙江哈尔滨卷)数学(带解析) 题型:解答题

如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒.

(1)求线段BC的长;
(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:
(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′,使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G,连接PF、QG,当t为何值时,?

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(黑龙江哈尔滨卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒.

(1)求线段BC的长;

(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:

(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′,使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G,连接PF、QG,当t为何值时,?

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒.

    (1)求线段BC的长;

    (2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:

    (3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE1F1,使点E的对应点E1落在线段AB上,点F的对应点是F1,E1F1交x轴于点G,连接PF、QG,当t为何值时,2BQ-PF= QG?

查看答案和解析>>

科目:初中数学 来源:2012年福建省南平市中考数学试卷(解析版) 题型:解答题

如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.
(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)
答:结论一:______;
结论二:______;
结论三:______.
(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此时BD的长.
(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)

查看答案和解析>>

同步练习册答案