精英家教网 > 初中数学 > 题目详情

若点P()到轴的距离是,到轴的距离是,则这样的点P有     (    )

A.1个   B.2个    C.3个   D.4个

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m.试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
小明在解答下图所示的问题时,写下了如下解答过程:

①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴建立如图所示的平面直角坐标系;
②设抛物线的解析式为y=ax2
③则B点的坐标为(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
问:(1)小明的解答过程是否正确,若不正确,请你加以改正;
(2)喷出的水流能否浇灌到地面上距离A点3.5m的庄稼上(图上庄稼在A点的右侧,庄稼的高度不计),若不能请你在上图所示的坐标系中将喷头B上下或左右平移,问至少要平移多少距离才能浇灌到地面的庄稼,并求出此时喷出的抛物线形水流的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

气象台发布的卫星云图显示,某台风在海岛A北偏西60°方向上的点B处生成,某城市(设为点C)在海岛A北偏东45°方向上,以O为原点建立如图所示的直角坐标系,点A位于y轴上,台风生成处B和城市所在处C都在x轴上,其中点A的坐标为(0,-100).
(1)请在图中表示北偏东45°方向的射线AC,并标出点C的位置;
(2)点B的坐标为
 
,点C的坐标为
 
;(结果保留根号)
(3)若此台风中心从点B以30km/h的速度向正东方向移动,已知距台风中心30km的范围内均会受到台风的精英家教网侵袭,那么台风从生成到最初侵袭C城要经过多长时间?(本问中
3
取1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•贺州)如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax2+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,
72
),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年浙江省杭州市下城区九年级(上)期末数学试卷(解析版) 题型:解答题

如图,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m.试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
小明在解答下图所示的问题时,写下了如下解答过程:

①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴建立如图所示的平面直角坐标系;
②设抛物线的解析式为y=ax2
③则B点的坐标为(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
问:(1)小明的解答过程是否正确,若不正确,请你加以改正;
(2)喷出的水流能否浇灌到地面上距离A点3.5m的庄稼上(图上庄稼在A点的右侧,庄稼的高度不计),若不能请你在上图所示的坐标系中将喷头B上下或左右平移,问至少要平移多少距离才能浇灌到地面的庄稼,并求出此时喷出的抛物线形水流的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2011年广西河池市宜州市中考数学一模试卷(解析版) 题型:解答题

如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax2+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.

查看答案和解析>>

同步练习册答案