精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.

(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)

【答案】
(1)解:①全等,理由如下:

∵t=1秒,

∴BP=CQ=1×1=1厘米,

∵AB=6cm,点D为AB的中点,

∴BD=3cm.

又∵PC=BC﹣BP,BC=4cm,

∴PC=4﹣1=3cm,

∴PC=BD.

又∵AB=AC,

∴∠B=∠C,

∴△BPD≌△CQP;

②假设△BPD≌△CQP,

∵vP≠vQ

∴BP≠CQ,

又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,

∴点P,点Q运动的时间t= =2秒,

∴vQ= = =1.5cm/s


(2)24秒;AC
【解析】解:(2)设经过x秒后点P与点Q第一次相遇,
由题意,得 1.5x=x+2×6,
解得x=24,
∴点P共运动了24s×1cm/s=24cm.
∵24=2×12,
∴点P、点Q在AC边上相遇,
∴经过24秒点P与点Q第一次在边AC上相遇.
【考点精析】通过灵活运用等腰三角形的性质,掌握等腰三角形的两个底角相等(简称:等边对等角)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知|x-3|和(y-2)2 互为相反数,先化简,并求值(x-2y)2 -(x-y)(x+y)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点AC的坐标分别为A100)、C04),点DOA的中点,点PBC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产若购买3盒豆腐乳和2盒猕猴桃果汁共需180元购买1盒豆腐乳和3盒猕猴桃果汁共需165元

1请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格

2该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的对角线AC 、BD相交于点O,延长AB至点E,使BE=AB,连接CE

(1)求证:四边形BECD是平行四边形;

(2)若∠E=60°,AC=,求菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线x轴分别交于A,0)、B,0)两点,直线=2x+t经过点A.

(1)已知A、B两点的横坐标分别为3、.

①当a =1时,直接写出抛物线和直线相应的函数表达式;

②如图,已知抛物线3x4这一段位于直线的下方,在5x6这一段位于直线的上方,求a的取值范围;

2)若函数的图像与轴仅有一个公共点,探求之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt,使∠BAQ=90°,,点C在点Q右侧,CQ=1厘米,过点C作直线ml,过的外接圆圆心OODm于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DEDF为邻边作矩形DEGF.设运动时间为t秒.

(1)直接用含t的代数式表示BQDF

(2)0t1时,求矩形DEGF的最大面积;

(3)Q在整个运动过程中,当矩形DEGF为正方形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,是轴对称图形但不是中心对称图形的是(
A.等边三角形
B.正六边形
C.正方形
D.圆

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列事件中,属于必然事件的是 ( )

A. 经过路口,恰好遇到红灯; B. 四个人分成三组,这三组中有一组必有2人;

C. 打开电视,正在播放动画片; D. 抛一枚硬币,正面朝上;

查看答案和解析>>

同步练习册答案