已知如图在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥BD交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论。
![]()
(1)证明:∵四边形ABCD是平行四边形,
∴∠4=∠C,AD=CB,AB=CD.
∵点E、F分别是AB、CD的中点,
∴AE=
AB,CF=
CD.
∴AE=CF.
∴△ADE≌△CBF(SAS).
(2)解:当四边形BEDF是菱形时,四边形AGBD是矩形.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC.
∵AG∥BD,
∴四边形AGBD是平行四边形.
∵四边形BEDF是菱形,
∴DE=BE.
∵AE=BE,
∴AE=BE=DE.
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四边形AGBD是矩形.
![]()
【解析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012届江苏省灌云县穆圩中学中考模拟数学试卷(带解析) 题型:解答题
已知如图在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥BD交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论。![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年山东青岛市崂山区九年级第一学期期末考试数学试卷(解析版) 题型:选择题
已知,如图,在平行四边形ABCD中,∠ABC的平分线与AD相交于点P,下列说法中正确的是( )
①△APB是等腰三角形 ②∠ABP+∠BPD=180°③PD+CD=BC
④![]()
![]()
A. ①②④ B. ①②③ C. ①③④ D. ①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com