分析 (1)根据等腰三角形的性质得到∠B=∠C,根据三角形的外角的性质得到∠PQB=∠CAQ,根据相似三角形的判定定理证明结论;
(2)根据相似三角形的性质求出BQ=6,根据等腰三角形的三线合一得到∠CQA=90°,根据相似三角形的性质得到答案;
(3)设BQ=x,BP=m,根据相似三角形的性质得到一元二次方程,根据题意和根的判别式计算即可.
解答 解:(1)∵AB=AC,
∴∠B=∠C.
∵∠AQP=∠B.
∴∠AQP=∠C.
又∵∠AQB=∠AQP+∠PQB,∠AQB=∠CAQ+∠C,
∴∠PQB=∠CAQ.
∴△BQP∽△CAQ.
(2)∵△BQP∽△CAQ,
∴$\frac{BQ}{AC}$=$\frac{BP}{CQ}$.
∴$\frac{BQ}{8}$=$\frac{4.5}{12-BQ}$,
解得BQ=6.
∵BC=12,
∴BQ=CQ=6.
又∵AB=AC,
∴AQ⊥BC,
∴∠CQA=90°.
∵△BQP∽△CAQ,
∴∠BPQ=∠CQA=90°.
(3)∵△BQP∽△CAQ,
∴$\frac{BQ}{AC}$=$\frac{BP}{CQ}$.
设BQ=x,BP=m,则 $\frac{x}{8}$=$\frac{m}{12-x}$,
整理得 x2-12x+8m=0.
∵在BC边上存在两个点Q,
∴方程有两个不相等的正实数根,
∴△=122-32m>0,解得 m<$\frac{9}{2}$,
∴BP长的取值范围为0<BP<$\frac{9}{2}$.
点评 本题考查的是相似三角形的判定和性质以及一元二次方程根的判别式的应用,掌握相似三角形的对应边的比相等是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com