精英家教网 > 初中数学 > 题目详情
11、如图,△ABC与△ADE都是直角三角形,∠B与∠AED都是直角,点E在AC上,∠D=30°,如果△ABC经过旋转后能与△AED重合,那么旋转中心是点
A
,逆时针旋转了
60
度.
分析:根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.
其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,△ABC经过旋转后能与△AED重合,即这两个三角形完全相同.
解答:解:根据题意,得
AC的对应边是AD,因此旋转的中心是点A,
旋转的度数是∠EDA的度数,即∠EDA的度数=90°-30°=60°.
点评:本题结合直角三角形的性质,考查了旋转的性质,关键是明确旋转角和旋转中心的概念.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC与△ADC关于直线AC对称,连接BD,若已知四边形ABCD的面积是125,AC=25,则BD的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC与△ADE是两个大小不同的等腰直角三角形,B、C、E在同一条直线上,连接CD.
(1)证明:△ABE≌△ACD;
(2)CD与BE是否垂直?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为(  )
A、
3
:1
B、
2
:1
C、5:3
D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC与△ABD都是等边三角形,点E,F分别在BC,AC上,BE=CF,AE与BF交于点G.
(1)求∠AGB的度数;
(2)连接DG,求证:DG=AG+BG.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图,△ABC与△A′B′C′关于直线MN对称,△A′B′C′与△A″B″C″关于直线EF对称.
(1)画出△ABC和直线EF;
(2)若直线MN和EF相交于点O,直线MN、EF所夹的锐角设为α,猜想∠BOB″与α之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案