精英家教网 > 初中数学 > 题目详情
23、如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由.
分析:(1)利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;
(2)过F作FH⊥MN于H,根据正方形及直角三角形的性质可求出△ABE≌△EHF,根据三角形全等可求出BE=HF,AB=EH,通过等量代换可得CH=FH,利用等腰直角三角形的性质即可解答.
解答:解:(1)证明:
∵四边形ABCD、AEFG都是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠1+∠3=90°,∠2+∠3=90°,
即∠1=∠2,∴△ADG≌△ABE;(3分)

(2)∠FCN=45°,(4分)
理由如下:
过F作FH⊥MN于H,则∠EHF=90°,
∵四边形ABCD、AEFG都是正方形,
∴AB=BC,AE=EF,∠ABE=∠AEF=90°,
∴∠1+∠4=90°,∠4+∠5=90°,
∴∠1=∠5,
又∵∠ABE=∠EHF=90°,
∴△ABE≌△EHF,(6分)
∴BE=HF,AB=EH,
∴BC=EH,
∴HC=BE,
∴在Rt△CHF中,CH=FH,
∴∠FCN=∠CFH=45°.(8分)
点评:此题比较复杂,涉及到正方形的性质及全等三角形的判定定理、直角三角形的性质,解答此题的关键是作出辅助线,利用直角三角形及全等三角形的性质解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=
a
a
时,S△FGE=S△FBE;当CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.

查看答案和解析>>

同步练习册答案