精英家教网 > 初中数学 > 题目详情

函数常用的表示方法有三种.
已知A、B两地相距30千米,小王以40千米/时的速度骑摩托车从A地出发匀速前往B地参加活动.请选择两种方法来表示小王与B地的距离y(千米)与行驶时间x(小时)之间的函数关系.

函数解析式:y=30﹣40x(0≤x≤),图像见解析.

解析试题分析:根据题意可以得到函数关系式:y=30﹣40x(0≤x≤),由解析式可以画出函数图像.
试题解析:根据题意可以得到函数解析式:y=30﹣40x(0≤x≤),
图像如图所示:

考点:一次函数图像及解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知一次函数y=x+b的图象与x轴,y轴交于点A、B.
(1)若将此函数图象沿x轴向右平移2个单位后经过原点,则b=     
(2)若函数y1=x+b图象与一次函数y2=kx+4的图象关于y轴对称,求k、b的值;
(3)当b>0时,函数y1=x+b图象绕点B逆时针旋转n°(0°<n°<180°)后,对应的函数关系式为y=-x+b,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

尔凡驾车从甲地到乙地,设他出发第xmin时的速度为ykm/h,图中的折线表示他在整个驾车过程中y与x之间的函数关系.
(1)当20≤x≤30时,汽车的平均速度为   km/h,该段时间行驶的路程为      km;
(2)当30≤x≤35时,求y与x之间的函数关系式,并求出尔凡出发第32min时的速度;
(3)如果汽车每行驶100km耗油8L,那么尔凡驾车从甲地到乙地共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,直线与x轴相交于点A,与直线相交于点P(2,).

(1)请判断的形状并说明理由.
(2)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥轴于F,EB⊥轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.
求:① S与t之间的函数关系式.
② 当t为何值时,S最大,并求S的最大值

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.
(1)请问有几种开发建设方案?
(2)哪种建设方案投入资金最少?最少资金是多少万元?
(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数y=x-4x+3的图象交x轴于A,B两点(点A在点B的左侧),              交y轴于点C.

(1)求直线BC的解析式;
(2)点D是在直线BC下方的抛物线上的一个动点,当△BCD的面积最大时,求D点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知点A(0,12),B(16,0),动点P从点A开始在线段AO上以每秒1个单位的速度向点O移动,同时点Q从点B开始在BA上以每秒2个单位的速度向点A移动,设点P、Q移动的时间为t秒。

⑴求直线AB的解析式;
⑵求t为何值时,△APQ与△AOB相似?
⑶当t为何值时,△APQ的面积为个平方单位?
⑷当t为何值时,△APQ的面积最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

一家图文广告公司制作的宣传画板颇受商家欢迎,这种画板的厚度忽略不计,形状均为正方形,边长在10~30dm之间.每张画板的成本价(单位:元)与它的面积(单位:dm2)成正比例,每张画板的出售价(单位:元)由基础价和浮动价两部分组成,其中基础价与画板的大小无关,是固定不变的.浮动价与画板的边长成正比例.在营销过程中得到了表格中的数据.

画板的边长(dm)
10
20
出售价(元/张)
160
220
(1)求一张画板的出售价与边长之间满足的函数关系式;
(2)已知出售一张边长为30dm的画板,获得的利润为130元(利润=出售价-成本价),
①求一张画板的利润与边长之间满足的函数关系式;
②当边长为多少时,出售一张画板所获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知反比例函数与一次函数的图象在第一象限相交于点A(1,),

(1)试确定这两个函数的表达式;
(2)求出这两个函数图像的另一个交点B的坐标,并根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

同步练习册答案