精英家教网 > 初中数学 > 题目详情

探究一:如图,正△ABC中,E为AB边上任一点,△CDE为正三角形,连接AD,猜想AD与BC的位置关系,并说明理由.
探究二:如图,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由.

解:(1)AD与BC的位置关系为AD∥BC;
∵△ABC和△DEC是正三角形,
∴△ABC∽△DEC,∠ACB=∠DCE=60°.
=,∠DCA=∠ECB.
∴△ACD∽△BCE.
∴∠DAC=∠EBC=60°.
∴∠DAC=∠ACB.
∴AD∥BC.

(2)AD与BC的位置关系为AD∥BC;
∵△ABC和△DEC是等腰三角形
DE=DC,且∠BAC=∠EDC,
∴∠ACB=∠DCE.
=,∠DCA=∠ECB.
∴△ACD∽△BCE.
∴∠DAC=∠EBC.
∴∠DAC=∠ACB.
∴AD∥BC.
分析:猜想AD与BC的位置关系为AD∥BC,欲证AD∥BC,可以根据正三角形,等腰三角形的性质,证明△ACD∽△BCE,再证明AD与BC的内错角相等,得出结论.
点评:观察测量,然后进行推理证明,是数学知识发现的基本规律.本题考查了正三角形,等腰三角形的性质,相似三角形的判定和性质,平行线的判定.注意证明方式相同.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•路北区一模)探究一:如图,正△ABC中,E为AB边上任一点,△CDE为正三角形,连接AD,猜想AD与BC的位置关系,并说明理由.
探究二:如图,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

探究一:如图1,正△ABC中,EAB边上任一点,△CDE为正三角形,连结AD,猜想ADBC的位置关系,并说明理由.

探究二:如图2,若△ABC为任意等腰三角形,AB=ACEAB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想ADBC的位置关系,并说明理由.

 


查看答案和解析>>

科目:初中数学 来源:2013年河北省中考数学模拟试卷(八)(解析版) 题型:解答题

探究一:如图,正△ABC中,E为AB边上任一点,△CDE为正三角形,连接AD,猜想AD与BC的位置关系,并说明理由.
探究二:如图,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年河北省唐山市路北区中考数学一模试卷(解析版) 题型:解答题

探究一:如图,正△ABC中,E为AB边上任一点,△CDE为正三角形,连接AD,猜想AD与BC的位置关系,并说明理由.
探究二:如图,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案